Ácidos nucléicos Concepto. Estructura. Información genética Tema:

Slides:



Advertisements
Presentaciones similares
Ácidos nucléicos Los ácidos nucleicos fueron descubiertos por Freidrich Miescher en 1869 Mirel Nervenis.
Advertisements

ADN La molécula de la herencia Jennifer Avilés.
Estructura y función del ADN. ¿Qué es un gen? §Es una secuencia de nucleótidos en la molécula de ADN, equivalente a una unidad de transcripción. §Contiene.
Ácidos nucleicos. Definición y composición Nucleótidos: nucleósido (pentosa + base nitrogenada) fosfato oligonucleótidos y polinucleótidos ADN:Descubrimiento.
Biología 2º Bachillerato - Salesianos Atocha Luis Heras.
Ácidos Nucleicos IES Bañaderos.
Práctica de laboratorio: Modelo De ADN
Ácidos Nucleicos María Bárbara De Biasio Facultad de Ciencias Veterinarias Asignatura: Bioquímica.
ESTRUCTURA Y FUNCION DEL ADN
Diferencia entre Adn y arn
Jorge tenezaca granda. Los ácidos nucleicos fueron descubiertos por Freidrich Miescher en 1869 Mirel Nervenis.
ACIDOS NUCLEICOS. Sintetizan las proteínas específicas de las células Almacenan, duplican y transmiten los caracteres hereditarios.
Ácidos nucléicos Los ácidos nucleicos fueron descubiertos por Freidrich Miescher en 1869 Mirel Nervenis.
PRUEBA FINAL CURSO Biomoléculas 3d.
¿Qué es la información genética?
Universidad Autónoma de Chiapas Facultad de Ciencias Químicas
construcción del mensaje
Almacenar la información genética de los seres vivos
Moléculas Químicas en Biología
ACIDOS NUCLEICOS Los ácidos nucleicos son grandes moléculas constituidas por la unión de monómeros, llamados nucleótidos. Los ácidos nucleicos son el ADN.
Ácidos nucleicos.
Nucleo y Acidos Nucleicos
BIOTECNOLOGÍA 2008 Clase 1 Prof. Oriana Salazar
Ácidos nucléicos Los ácidos nucleicos fueron descubiertos por Freidrich Miescher en 1869 Mirel Nervenis.
Los constructores de las proteínas
LIPIDOS FORMADOS POR C,H,O CONSTITUÍDO POR UN GRUPO MUY VARIADO DE
Tema 6: Ácidos nucleicos
ACIDO RIBONUCLEICO.
ÁCIDOS NUCLEICOS Biomoléculas orgánicas 2º de Bachillerato
LOS ÁCIDOS NUCLEICOS Son biomoléculas orgánicas formadas por C, H, O, N y P. Nunca llevan S. Se forman por la polimerización de nucleótidos, que se unen.
CIENCIAS NATURALES Genética Molecular.
Ácidos nucleicos zujey serpa romero
ÀCIDOS NUCLEICOS.
Nucleo y acidos nucleicos
NUCLEÓSIDOS Y NUCLEÓTIDOS QUÍMICA 2016
Tema 6: Ácidos nucleicos
EL NUCLEO CELULAR Dra. Flora Arana 2016.
COMPOSICION Química DE LOS SERES VIVOS
Ácidos nucleicos.
Ácidos nucleicos.
Síntesis de ARN y proteínas
Diseño: Q. Adán Valenzuela Olaje
HABLANDO DE NUTRICIÓN PARA UNA BUENA SALUD. Erika Judith López Zúñiga Bebidas con alto contenido de azúcar Consecuencias en la salud de los niños. Alimentos.
Ácidos Nucleicos.. Son las moléculas portadoras del mensaje genético de todos los organismos. Se trata de moléculas complejas formadas por la unión de.
EL CÓDIGO GENÉTICO.
Bioquímica ACIDOS NUCLEICOS 2018 Tema:5 Dra. Silvia Varas
Universidad nacional autónoma de honduras del valle de sula unah-vs asignatura: fisiología i catedrático: dr. alejandro alvarez integrantes: vilma ávila.
Ácidos nucléicos Los ácidos nucleicos fueron descubiertos por Freidrich Miescher en 1869 Mirel Nervenis.
EL CÓDIGO GENÉTICO.
DOGMA CENTRAL DE LA BIOLOGÍA MOLECULAR
Los constructores de las proteínas
Síntesis de Proteínas En 1970 Francis Crick (uno de los descubridores de la doble hélice del ADN) enunció el dogma central de la Biología molecular que.
Síntesis de Proteínas.
Ácido Ribonucleico (ARN)
FUNDACION BARCELO, FACULTAD DE MEDICINA
Diseño: Q. Adán Valenzuela Olaje
EL CÓDIGO GENÉTICO.
CÓDIGO GENÉTICO Y SÍNTESIS DE PROTEÍNAS
NUCLEÓSIDOS y NUCLEÓTIDOS
Procesos Genéticos Objetivo de la clase:
Tema 6: Ácidos nucleicos
EL CÓDIGO GENÉTICO.
Química de los ÁCIDOS NUCLEICOS
ÁCIDOS NUCLEICOS.
EL CÓDIGO GENÉTICO.
Ácidos nucléicos Los ácidos nucleicos fueron descubiertos por Freidrich Miescher en 1869 Mirel Nervenis.
- CICLO CELULAR - BIOSÍNTESIS PROTEICA
TEMA 2 GENÉTICA MOLECULAR.
Código genético.
EL CÓDIGO GENÉTICO.
Transcripción de la presentación:

Ácidos nucléicos Concepto. Estructura. Información genética Tema: (ADN y ARN) Concepto. Estructura. Información genética

Ácidos nucléicos Los ácidos nucleicos fueron descubiertos por Freidrich Miescher en 1869

La información genética o genoma, está contenida en unas moléculas llamadas ácidos nucleicos. Existen dos tipos de ácidos nucleicos: ADN y ARN. El ADN guarda la información genética en todos los organismos celulares, el ARN es necesario para que se exprese la información contenida en el ADN

No suele utilizarse en el diagnóstico de rutina ¿Qué aplicaciones tiene el análisis de ácidos nucleicos en enfermedades genéticas de herencia mendeliana? DNA RNA Se emplea para confirmar la presencia de mutaciones causantes de la enfermedad, ya sea prenatal o de forma posterior al nacimiento No suele utilizarse en el diagnóstico de rutina

COMPOSICIÓN QUÍMICA Y ESTRUCTURA DE LOS ÁCIDOS NUCLEICOS Los ácidos nucléicos resultan de la polimerización de monómeros complejos denominados nucleótidos. Un nucleótido está formado por la unión de un grupo fosfato al carbono 5’ de una pentosa. A su vez la pentosa lleva unida al carbono 1’ una base nitrogenada.

Estructura del nucleótido monofosfato de adenosina (AMP)

NUCLEÓTIDO

Aquellas bases formadas por dos anillos se denominan bases púricas (derivadas de la purina). Dentro de este grupo encontramos: Adenina (A), y Guanina (G). Si poseen un solo ciclo, se denominan bases pirimidínicas (derivadas de la pirimidina), como por ejemplo la Timina (T), Citosina (C), Uracilo (U).

BASES NITROGENADAS

Nucleótidos de importancia biológica ATP (adenosin trifosfato): Es el portador primario de energía de la célula. Esta molécula tiene un papel clave para el metabolismo de la energía. La mayoría de las reacciones metabólicas que requieren energía están acopladas a la hidrólisis de ATP.

ATP (Adenosin trifosfato)

AMP cíclico: Es una de las moléculas encargadas de transmitir una señal química que llega a la superficie celular al interior de la célula. NAD+ y NADP+: (nicotinamida adenina dinucleótido y nicotinamida adenina dinucleótido fosfato). Son coenzimas que intervienen en las reacciones de oxido-reducción, son moléculas que transportan electrones y protones. Intervienen en procesos como la respiración y la fotosíntesis.

AMP Adenosinmonofosfato

NAD+ y NADP+

POLINUCLEÓTIDOS Existen dos clases de nucleótidos, los ribonucleótidos en cuya composición encontramos la pentosa ribosa y los desoxirribonucleótidos, en donde participa la desoxirribosa. Los nucleótidos pueden unirse entre sí, mediante enlaces covalentes, para formar polímeros, es decir los ácidos nucleicos, el ADN y el ARN. Dichas uniones covalentes se denominan uniones fosfodiéster. El grupo fosfato de un nucleótido se une con el hidroxilo del carbono 5’ de otro nucleótido, de este modo en la cadena quedan dos extremos libres, de un lado el carbono 5’ de la pentosa unido al fosfato y del otro el carbono 3’ de la pentosa.

Estructura de un Polirribonucleótido

ADN – ÁCIDO DESOXIRRIBONUCLEICO En 1953 Watson y Crick propusieron el modelo de doble hélice, para esto se valieron de los patrones obtenidos por difracción de rayos X de fibras de ADN. Este modelo describe a la molécula del ADN como una doble hélice, enrollada sobre un eje, como si fuera una escalera de caracol y cada diez pares de nucleótidos alcanza para dar un giro completo.

Modelo de la doble hélice de ADN Representación abreviada de un segmento de ADN

El modelo de la doble hélice establece que las bases nitrogenadas de las cadenas se enfrentan y establecen entre ellas uniones del tipo puente de hidrógeno. Este enfrentamiento se realiza siempre entre una base púrica con una pirimídica, lo que permite el mantenimiento de la distancia entre las dos hebras. La Adenina se une con la timina formando dos puentes de hidrógeno y la citosina con la guanina a través de tres puentes de hidrógeno. Las hebras son antiparalelas, pues una de ellas tiene sentido 5’ ® 3’, y la otra sentido 3’ ® 5’.

Pares de bases del ADN: La formación específica de enlaces de hidrógeno entre G y C y entre A y T genera los pares de bases complementarias

Una corta sección de la doble hélice de ADN Las hebras son antiparalelas, pues una de ellas tiene sentido 5’ ® 3’, y la otra sentido 3’ ® 5’.

ARN – ÁCIDO RIBONUCLEÍCO El ácido ribonucleíco se forma por la polimerización de ribonucleótidos. Estos a su vez se forman por la unión de: a) un grupo fosfato. b) ribosa, una aldopentosa cíclica y c) una base nitrogenada unida al carbono 1’ de la ribosa, que puede ser citocina, guanina, adenina y uracilo. Esta última es una base similar a la timina.

En general los ribonucleótidos se unen entre sí, formando una cadena simple, excepto en algunos virus, donde se encuentran formando cadenas dobles. La cadena simple de ARN puede plegarse y presentar regiones con bases apareadas, de este modo se forman estructuras secundarias del ARN, que tienen muchas veces importancia funcional, como por ejemplo en los ARNt (ARN de transferencia).

Se conocen tres tipos principales de ARN y todos ellos participan de una u otra manera en la síntesis de las proteínas. Ellos son: ARN mensajero (ARNm) ARN ribosomal (ARNr) ARN de transferencia (ARNt).

ARN MENSAJERO (ARNm) Consiste en una molécula lineal de nucleótidos (monocatenaria), cuya secuencia de bases es complementaria a una porción de la secuencia de bases del ADN. El ARNm dicta con exactitud la secuencia de aminoácidos en una cadena polipeptídica en particular. Las instrucciones residen en tripletes de bases a las que llamamos codones. Son los ARN más largos y pueden tener entre 1000 y 10000 nucleótidos

ARN RIBOSOMAL (ARNr) Este tipo de ARN una vez transcripto, pasa al nucleolo donde se une a proteínas. De esta manera se forman las subunidades de los ribosomas. Aproximadamente dos terceras partes de los ribosomas corresponde a sus ARNr.

ARN DE TRANSFERENCIA (ARNt) Este es el más pequeño de todos, tiene aproximadamente 75 nucleótidos en su cadena, además se pliega adquiriendo lo que se conoce con forma de hoja de trébol plegada. El ARNt se encarga de transportar los aminoácidos libres del citoplasma al lugar de síntesis proteica. En su estructura presenta un triplete de bases complementario de un codón determinado, lo que permitirá al ARNt reconocerlo con exactitud y dejar el aminoácido en el sitio correcto. A este triplete lo llamamos anticodón.

Molécula de ARNt

FUNCIONES DE LOS ÁCIDOS RIBONUCLEICOS Las funciones de los ARN pueden resumirse en tres: Transmisión de la información genética desde el ADN a los ribosomas. Las enzimas ARN-polimerasas a partir de un gen de ADN, es decir, una secuencia de nucleótidos de ADN con información sobre una proteína, sintetizan, mediante la complementariedad de las bases, un ARN mensajero, proceso denominado transcripción. Luego, este ARNm llegará hasta los ribosomas. El ADN es utilizado únicamente como almacén de información genética. Conversión de la secuencia de ribonucleótidos de ARNm en una secuencia de aminoácidos. Este proceso se denomina traducción y se realiza en los ribosomas. En él intervienen, además del ARNm, el ARNr de los ribosomas y el ARNt que transportan los aminoácidos. Almacenamiento de la información genética. Algunos virus carecen de ADN y, por ello, contienen su información biológica en forma de ARN. Por ejemplo, el virus de la gripe, el de la polio, el de la inmunodeficiencia humana, los reovirus (que poseen ARN bicatenario), etc Eduardo Gómez

El ADN y el ARN se diferencian: el peso molecular del ADN es generalmente mayor que el del ARN el azúcar del ARN es ribosa, y el del ADN es desoxirribosa el ARN contiene la base nitrogenada uracilo, mientras que el ADN presenta timina la configuración espacial del ADN es la de un doble helicoide, mientras que el ARN es un polinucleótido lineal monocatenario, que ocasionalmente puede presentar apareamientos intracatenarios

Diferencias entre DNA y RNA Doble cadena helicoidal Cadena Simple Tiene las bases A, T, G y C Tiene las bases A, U, G y C La pentosa es una desoxirribosa La pentosa es una ribosa Es una Macromolécula Es más pequeña que el DNA Esta en el Núcleo Se encuentra en el citoplasma Constituye los Genes (se replica o se trascribe a RNA) Es una molécula involucrada en la síntesis de proteínas

Diferencias estructurales entre el DNA y el RNA pentosa bases nitrogenadas estructura DNA RNA