DINÁMICA DE LA PARTÍCULA. DEFINICIÓN DE DINÁMICA Y CINEMÁTICA Dinámica: Estudio del movimiento de un objeto, y de las relaciones de este movimiento con.

Slides:



Advertisements
Presentaciones similares
Dinámica La dinámica estudia la causa del movimiento
Advertisements

Fuerzas y Leyes de Newton
2 Las fuerzas ESQUEMA INICIO ESQUEMA INTERNET PARA EMPEZAR INTERNET
Fuerzas y Leyes de Newton
Fuerzas y Leyes de Newton
Jorge González Contreras Séptimo Año Básico
Fuerzas y Leyes de Newton
ESTÁTICA EQUILIBRIO.
FUERZAS Y MOVIMIENTO No es verdad que para que los cuerpos se muevan hay que aplicarles una fuerza, los cuerpos se mueven solos (inercia)
PRINCIPIOS DE LA MECANICA CLASICA
Estática Lizett Colín A
I. Movimiento de translación de una partícula
LAS FUERZAS SOBRE LOS SÓLIDOS
DINÁMICA DE LA PARTÍCULA
Movimientos y fuerzas 6 Índice del libro 1.El movimientoEl movimiento 2.La velocidadLa velocidad 3.Movimiento rectilíneo uniforme (MRU)Movimiento rectilíneo.
Dinámica del movimiento circular uniforme Objetivos: 1. Aplicar la Segunda Ley de Newton a l MCU.
PONER FOLIO****** Movimiento y vectores CLASE 6 Movimiento y vectores CLASE 6.
Fuerzas y Leyes de NewtonLeyes. FUERZAS Y Leyes de Newton Una fuerza es toda causa capaz de deformar un cuerpo o modificar su estado de reposo o movimiento.
Segundo ciclo.  Se preocupa de quién produce el movimiento.  Magnitud vectorial Fuerza: Interacción entre dos cuerpos.
PPTCES014CB32-A16V1 Clase Dinámica II: ley de gravitación y fuerza de roce.
Clase Dinámica II: ley de gravitación y fuerza de roce PPTCTC014TC32-A16V1.
POLEAS.  En un sistema formado por varias masas (con dos vamos a trabajar) unidas con una cuerda a una polea.  Ej: Maquina de Atwood. A B.
PONER FOLIO****** Aplicación de las leyes de Newton CLASE 9 Aplicación de las leyes de Newton CLASE 9.
La descripción del movimiento y la fuerza. Movimiento Es un fenómeno físico que se define como todo cambio de posición que experimentan los cuerpos en.
12/09/2017LUIS VENEGAS MUÑOZ1 Estática y Dinámica « Conceptos básicos Estática » Carrera: Ingeniero (E) Industrial UNIVERSIDAD CATOLICA DE LA SANTISIMA.
Introducción a Cinemática y Dinámica.
Fuerzas.
©2008 by W.H. Freeman and Company
Fuerza 2.
BUAP-FCE-ISA : FÍSICA I
VECTORES.
DINÁMICA LEYES DE NEWTON.
LAS FUERZAS. LA GRAVEDAD Y EL UNIVERSO
DINÁMICA Calama, 2016.
Cinemática Dinámica Trabajo y Energía Sólido Rígido
FUERZAS - DINÁMICA Física y Química - 4º eso.
LOS CAMBIOS DE MOVIMIENTO
MAGNITUDES FISICAS   Una magnitud, es toda cantidad que se puede medir, como por ejemplo: el tiempo, la longitud, la temperatura, la velocidad. Las magnitudes.
LEYES DE NEWTON.
ESTÁTICA Jessica Alexandra Rivera.
Fuerzas y Leyes de Newton. FUERZAS Y Leyes de Newton Una fuerza es toda causa capaz de deformar un cuerpo o modificar su estado de reposo o movimiento.
Cinemática Dinámica Trabajo y Energía Sistemas de partículas
ESTÁTICA La Estática es una rama de la mecánica cuyo objetivo es estudiar las condiciones que deben cumplir las fuerzas que actúan sobre un cuerpo, para.
LEY DE GRAVITACION UNIVERSAL. 9.1 LA LEY Y LA FUERZA GRAVITACIONAL.
LEYES DE LA DINÁMICA Las leyes de Newton, también conocidas como leyes del movimiento de Newton, son tres principios a partir de los cuales se explican.
Fuerzas y Leyes de Newton
Estudio del movimiento
Aceleración y fuerza Leyes de Newton.
VECTORES.
HISTORIA
El magnetismo y la electricidad
LEYES DE NEWTON – 1 ERA CONDICIÓN DE EQUILIBRIO Principio de Inercia, Principio de Acción y Reacción.
UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERÍA QUÍMICA Y METALURGIA ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA AGROINDUSTRIAL.
La Fuerza, se puede definir como una: magnitud vectorial, que representa la acción entre 2 o más cuerpos, cuyo resultado produce cambios físicos en estos.
Unidad 4 Anexo 1. Capítulo II. Vibraciones mecánicas.
Las Leyes de Newton.
Unidad N°2: Tipos de fuerzas
Capítulo 3 Ciencias Físicas
VECTORES.
Capítulo 3 Ciencias Físicas
Leyes de Newton Curso de Física I.
Las Leyes de Newton. Sir Isaac Newton (4 de enero, de marzo, 1727)
ESTÁTICA DEFINICIÓN-FUERZA LEYES DE NEWTON TIPOS DE EQUILIBRIO
F UERZA ¿Cómo se representan?. Fuerza ¿Quién hace fuerza? ¿Quién hace más fuerza?
FUERZAS Y Leyes de Newton Una fuerza es toda causa capaz de deformar un cuerpo o modificar su estado de reposo o movimiento. Las fuerzas son magnitudes.
 “ La Mecánica es la parte de la Física que estudia el comportamiento mecánico (en contraposición con los comportamientos químicos y térmicos) de cuerpos.
DINÁMICA: LEYES DEL MOVIMIENTO DE NEWTON
VISUALIZACION DE FLUJO Y PATRONES DE FLUJO. ANÁLISIS Al aplicar el concepto lagrangiano a un fluido, el diagrama de cuerpo libre se utilizo para mostrar.
FUERZA NORMAL Definición:
Inercia Masa Peso Fuerza. Inercia Se denomina en física inercia a la resistencia que oponen los cuerpos a modificar su estado de movimiento o de quietud,
Transcripción de la presentación:

DINÁMICA DE LA PARTÍCULA

DEFINICIÓN DE DINÁMICA Y CINEMÁTICA Dinámica: Estudio del movimiento de un objeto, y de las relaciones de este movimiento con conceptos físicos tales como la fuerza y la masa. En otras palabras, estudio del movimiento atendiendo a las causas que lo producen. Cinemática: Estudio del movimiento, usando los conceptos de espacio y tiempo, sin tener en cuenta las causas que lo producen.

FUERZA Una fuerza es toda causa capaz de deformar un cuerpo o modificar su estado de reposo o movimiento. Las fuerzas son magnitudes vectoriales y su unidad en el S.I. es el newton, N. Punto de aplicación magnitud dirección sentido Toda fuerza tiene un agente específico e identificable, que puede ser animado o inanimado. Por ejemplo el agente de la fuerza de gravedad es la Tierra

CARÁCTERÍSTICAS DE UNA FUERZA Punto de aplicación.— Es el lugar concreto sobre el cual actúa la fuerza. En el se comienza a dibujar el vector que representa la fuerza. Punto de aplicación magnitud dirección sentido Magnitud o intensidad.— Indica el valor numérico de la fuerza en newtons. Se corresponde con la longitud del vector. Dirección.— Es la recta a lo largo de la cual se aplica la fuerza. La línea sobre la que se dibuja el vector. Sentido.— Con la misma dirección, una fuerza puede tener dos sentidos opuestos. Se indica con la punta de la flecha del vector.

TIPOS DE FUERZAS Fuerzas electromagnéticas de atracción o repulsión entre partículas cargadas en reposo o en movimiento Fuerzas nucleares intensas entre partículas subatómicas, responsable de la existencia del núcleo atómico asegura la cohesión interna de los constituyentes del núcleo atómico Fuerzas nucleares débiles de corto alcance, rige algunos procesos radiactivos, establece la estabilidad de algunos núcleos Fuerza de atracción gravitacional entre cuerpos debido a sus masas

LEYES DE NEWTON PRIMERA LEY DE NEWTON PRINCIPIO DE LA INERCIa Todo cuerpo continua en su estado de reposo o se mueve con movimiento rectilíneo uniforme si sobre él no actúa ninguna fuerza o si la resultante de todas las fuerzas (fuerza neta) que actúan sobre él es nula.

SEGUNDA LEY DE NEWTON Cuando la fuerza neta que actúa sobre un cuerpo no es cero, el cuerpo se mueve con una aceleración en la dirección de la fuerza. Experimentalmente se demuestra que para una masa fija, si aumenta el valor de la fuerza, su aceleración aumenta proporcionalmente; F resultante = m a F = m a La Segunda Ley de Newton es una expresión vectorial y equivale a tres ecuaciones escalares, una en cada dirección x, y y z, ∑ F x = ma x, ∑ F y = ma y, ∑ F z = ma z.

TERCERA LEYE DE NEWTON Cuando dos cuerpos interaccionan, el primero ejerce una fuerza sobre el segundo y éste ejerce una fuerza sobre el primero; estas dos fuerzas tienen la misma dirección, la misma magnitud y sentido contrario. F´ F F’ F PRINCIPIO DE ACCIÓN Y REACCIÓN

CONSECUENCIAS DE LAS LEYES DE NEWTON INERCIA.— Es una propiedad que tienen los cuerpos de oponerse a cualquier cambio en su estado de reposo o movimiento La medida cuantitativa de la inercia de un cuerpo es la MASA INERCIAL NEWTON.—Es la fuerza que actuando sobre un kilogramo de masa le produce una aceleración de 1 m/s 2 Isaac Newton 1N = 1kg x 1m/s 2 PESO.—Es la fuerza con que la Tierra atrae a los cuerpos Es una magnitud vectorial cuyo módulo es: La dirección es vertical; el sentido, hacia abajo y el punto de aplicación se llama centro de masas o de gravedad. |P | = m |g | P P

Al aplicar las leyes de Newton se deben identificar todas las fuerzas externas que actúan sobre un cuerpo y dibujar un diagrama de cuerpo libre. Un diagrama de cuerpo libre es un esquema donde se muestra el cuerpo aislado o un punto que lo representa, en el que se dibujan todas las fuerzas aplicadas sobre el cuerpo. Diagrama de Cuerpo Libre

Consideremos este balde muy pesado que es elevado por medio de una soga con velocidad creciente desde un punto inicial hasta un punto final. sistema punto inicial punto final

FUERZA RESULTANTE La fuerza resultante, R, es una sola fuerza que tiene el mismo efecto que si todas las que actúan sobre el cuerpo interviniesen a la vez. COMPOSICIÓN DE FUERZAS Composición de dos fuerzas. Regla del paralelogramo 1. Representa las dos fuerzas con el mismo punto de aplicación. 2. Construye un paralelogramo trazando paralelas a cada fuerza desde el extremo de la otra. 3. Une el punto de aplicación con el vértice opuesto del paralelogramo. Esa es la fuerza resultante. R F 1 F 2 Paralela a F 2 1

FUERZA NORMAL Es siempre perpendicular a la superficie de apoyo. F N P |F| =|N| |N| = |P| P x y PyPy PxPx y a P x se le llama componente tangencial del peso y a P y componente normal del peso. Se representa por N En el S.I. se mide en N Es una fuerza que aparece siempre que un cuerpo está apoyado sobre una superficie; esta fuerza evita que la superficie se deforme.

FUERZA DE ROZAMIENTO Se representa por F R y es una fuerza que actúa en sentido opuesto al movimiento y se produce como consecuencia de la fricción que tiene lugar entre la superficie del móvil y la superficie sobe la que este se mueve, o bien del medio (gas o líquido) que atraviesa R La irregularidad de la superficie produce la fuerza de roce.

La fuerza de roce estático, FE FE ≤µEN Cuando el bloque está apunto de moverse, la fuerza de roce estático es máxima, FEmáx, lo mismo que el coeficiente de roce es máximo, µEmáx, entonces: FEmáx =µEmaxN

FUERZA CENTRÍPETA Una partícula que se mueve sobre una trayectoria circular de radio R con rapidez constante, se encuentra sometida a una aceleración radial de magnitud v2/R. Por la segunda ley de Newton, sobre la partícula actúa una fuerza en la dirección de a, hacia el centro de la circunferencia, cuya magnitud es: Por ser proporcional a la aceleración centrípeta, la fuerza Fc se llama fuerza centrípeta. Su efecto es cambiar la dirección de la velocidad de un cuerpo.