Capítulo 1 Algebra de Boole. El matemático inglés George Boole nació el 2 de noviembre de 1815 en Lincoln y falleció el 8 de diciembre de 1864 en Ballintemple,

Slides:



Advertisements
Presentaciones similares
Capítulo 1 Algebra de Boole.
Advertisements

Instalación de Computadoras
Organización de Computadoras UNLA
CIRCUITOS ELECTRICOS Y ELECTRONICOS
Compuertas lógicas Puertas lógicas.
Algebra Booleana y Compuertas Lógicas
Álgebra de Boole Electrónica Digital
Universidad Autónoma San Francisco
Electrónica Digital.
Tecnologías de las computadoras
Realizado por Carolina Rubio
Unidad Didáctica Electrónica Digital
ELECTRÓNICA DIGITAL.
ELECTRÓNICA DIGITAL Se denomina señal a la información que representa una determinada magnitud física ( temperatura, presión, velocidad, etc ) y su evolución.
Reglas Básicas del Álgebra de Boole
Circuitos Lógicos 20 septiembre 2010.
Compuertas lógicas INTRODUCCION
Algebra booleana. Introduccion Las algebras booleanas, estudiadas por primera vez en detalle por George Boole, constituyen un lugar prominente en el advenimiento.
Algebra Booleana y Compuertas Lógicas AND, OR, NOT, XOR, NAND e Identidades del Algebra Booleana.
Circuitos Lógicos 20 septiembre ¿Qué son? Son estructuras formales que representan sistemas para la transmisión de información de toda índole (desde.
Presentado por: Yuli Dominguez. Portal Educa Panamá. Sistema de numeración.
ELECTRICIDAD. Para que exista circulación de corriente eléctrica debe haber un camino cerrado. Que salga de un lado de la fuente, pase por algún transformador.
LAS COMPUERTAS LOGICAS Y SUS TABLAS DE VERDAD POR JULIAN ARANGO ARANGO.
Algebra de Boole SISTEMAS DIGITALES I.  En 1854 el matemático inglés George Boole formalizó un sistema algebraico de dos valores para expresar cierto.
Lenguaje Algebraico En el mundo hay una amplia variedad de idiomas, tales como el castellano, inglés y portugués. También hay lenguajes propios de los.
1 UNIDAD 2: LÓGICA COMBINACIONAL © ILCEO: ING. MIGUEL ANGEL PEREZ SOLANO Analiza, desarrolla y resuelve minimización de funciones lógicas utilizando diferentes.
Universidad Nacional del Nordeste Facultad de Ciencias Exactas y Naturales y Agrimensura Licenciatura en Sistemas de Información Profesora Responsable:
La función de transferencia de sistemas lineales Departamento de Control, División de Ingeniería Eléctrica Facultad de Ingeniería UNAM México D.F. a 21.
Organización del Computador 1 Lógica Digital 1 Algebra de Boole y compuertas.
Unidad 1 Principios de electrónica digital
ELECTRICIDAD.
Potenciación Bibliografía: el mentor de matemática Grupo Océano
2. Simplificación de funciones booleanas: Método de Karnaugh
Algebra de Boole Sistemas Digitales I.
EXIGENCIAS COMPUTACIONALES DEL PROCESAMIENTO DIGITAL DE LA INFORMACION
Unidad Didáctica Electrónica Digital
Desigualdades.
A EJEMPLO 1. Acerca del circuito de dos mallas de la figura, conteste a las siguientes preguntas: (a) ¿Qué lectura de corriente indicará el amperímetro.
Componentes electrónicos análogos y digitales
UNIDAD 1 LÓGICA MATEMÁTICAS.
Intervalos y Desigualdades
Electrónica Digital.
Circuitos combinacionales II
con a, b y c constantes reales y a ≠ 0.
Cicuitos Combinatorios y Algebra Booleana
Unidad 5. Capítulo II. Modelos de sistemas en forma matricial.
Lógica de Proposiciones y Predicados
Arquitectura de Computadoras Decodificadores
Compuertas Lógicas
MATEMÁTICA DISCRETA Y LÓGICA 1
EXPRESIONES Una expresión es una forma especial de asignación.
Álgebra de Boole Y puertas lógicas.
Funciones Prof. M. Alonso
Unidad Didáctica Electrónica Digital
Retroalimentación ejercicios de tarea. Ejercicios para resolver 1.¿Cuántos bytes hay exactamente en un sistema que contiene a.32 Kbytes b.64 Mbytes c.6.4.
Unidad Didáctica Electrónica Digital
Algebra de Boole. “ George Boole ( ) ” Lógico y matemático británico. En 1854, escribió Investigación sobre Las leyes del pensamiento An Investigation.
Lenguaje Algebraico En el mundo hay una amplia variedad de idiomas, tales como el castellano, inglés y portugués. También hay lenguajes propios de los.
Capítulo 1 Algebra de Boole. El matemático inglés George Boole nació el 2 de noviembre de 1815 en Lincoln y falleció el 8 de diciembre de 1864 en Ballintemple,
ÁLGEBRA. DEFINICIÓN DE ÁLGEBRA El Álgebra es una rama de las matemáticas que emplea números, letras y signos para hacer referencia a las distintas operaciones.
Arquitectura de Computadoras Conferencia 2 Circuitos Combinacionales
Centro Universitario UAEM Ecatepec
Compuertas lógicas Estos circuitos pueden visualizarse como máquinas que contienen uno o más dispositivos de entrada y exactamente un dispositivo de salida.
Eduardo Cruz Pérez.
OBJETIVO: Aplicar los principios básicos de la Lógica a la Matemática.
La función de transferencia de sistemas lineales Departamento de Control, División de Ingeniería Eléctrica Facultad de Ingeniería UNAM México D.F. a 21.
La función de transferencia de sistemas lineales Departamento de Control, División de Ingeniería Eléctrica Facultad de Ingeniería UNAM México D.F. a 21.
PRO. ALDO G. ECUACIONES. EXPRESIONES ALGEBRAICAS Si se combinan, números representados por símbolos, mediante una o más operaciones de suma, resta, multiplicación,
Transcripción de la presentación:

Capítulo 1 Algebra de Boole

El matemático inglés George Boole nació el 2 de noviembre de 1815 en Lincoln y falleció el 8 de diciembre de 1864 en Ballintemple, Irlanda. Boole recluyó la lógica a una álgebra simple. También trabajó en ecuaciones diferenciales, el cálculo de diferencias finitas y métodos generales en probabilidad. Introducción George Boole

Variable Lógica ► En general, el termino variable lógica o booleana, hace referencia a cualquier símbolo lineal A,B,....,Z empleado para representar dispositivos o magnitudes físicas que llenan solamente dos valores o estados, verdadero o falso, que son representados simbólicamente por 1 o 0 respectivamente. Definición ► Las dos posiciones o estados “abierto” - “cerrado” de un contacto eléctrico se designan mediante los símbolos 0 (no corre electricidad) y 1 (hay electricidad) respectivamente.

Variable Lógica ► Debido a que el contacto esta “abierto”, no pasa corriente eléctrica por el cable. ► Z= 0 quiere decir que tiene un valor lógico de “cero”, no pasa electricidad porque el pulsador esta en reposo (ninguna fuerza esta venciendo el resorte de retención). Pulsador Normalmente Abierto

Variable Lógica ► Ahora accionamos el pulsador (ya no esta más en reposo). ► La corriente eléctrica recorre el cable, esto implica que Z = 1. Pulsador Normalmente Abierto

Variable Lógica ► Un contacto NC es el que se usa el las puertas de las heladeras o automóviles, que encienden una luz cuando deja de estar oprimido. ► El estado de reposo de un pulsador NC implica que Z=1. Pulsador Normalmente Cerrado

Variable Lógica ► Al accionar el pulsador, deja de pasar corriente eléctrica por el cable. ► Entonces Z toma el valor lógio “cero”. Pulsador Normalmente Cerrado

Función Lógica ► Una función lógica o booleana es una variable lógica cuyo valor es equivalente al de una expresión algebraica, constituida por otras variables lógicas relacionadas entre sí por medio de las operaciones suma lógica (+), y/ o producto lógico (·) y/o negador (-). ► Las tres operaciones mencionadas son las operaciones básicas del álgebra de Boole, que darán lugar a las funciones básicas “OR”, “AND” y “NEGACIÓN”. Definición

Función Lógica ► El valor de la expresión algebraica depende de los valores lógicos asignados a las variables que la constituyen, y de la realización de las operaciones indicadas. Definición Por ejemplo, una suma lógica sería Z=A+B, donde Z tomará el valor cero o uno según los valores de A y B. Z tomará el valor cero sólamente cuando tanto A como B tengan el valor cero. Recordemos que: = = = = 1

Función Lógica Definición Un producto lógico sería Z = A · B, donde Z tomará el valor uno sólamente cuando tanto A como B tengan el valor uno. Recordemos que: 0 · 0 = 0 1 · 0 = 0 0 · 1 = 0 1 · 1 = 1 Una negación invierte el valor de las variables. Se representa con la variable (en este caso “A”) negada. Así: 0 = 1 1 = 0

Tabla de Verdad ► La tabla de verdad es una representación del comportamiento de una función lógica, dependiendo del valor particular que puedan tomar cada una de sus variables. ► En ella deben figurar todas las combinaciones posibles entre las variables, y para cada una aparecera el valor de la función. Definición

Tabla de Verdad 1 0 A ► Se tienen n variables y las tablas de verdad se construyen respondiendo a la expresión: “El número de filas es igual a 2 elevado a la n”. ► 2 1(variable) = 2 filas2 2(variables) = 4 filas 1 y 2 variables BA

Tabla de Verdad 2 3 variables = 8 filas ABC

Compuertas Lógicas ► Cuando se desea cambiar el estado de una variable determinada se podría accionar una llave (compuerta) que realice este proceso. ► “Compuerta” proviene de que este dispositivo puede usarse para permitir o no que el nivel que llega a un cable de entrada se repita en el cable de salida. ► “Lógica” se debe a que una compuerta realiza electrónicamente una operación lógica, de forma tal de que a partir de una combinación de valores lógicos en las entradas, se obtiene un valor lógico (1 ó 0) en su salida. Definición

Compuertas Lógicas Compuerta “AND” Una Compuerta AND de dos entradas es un dispositivo electrónico que posee dos entradas, a las que llegan los niveles de tensión de dos cables (A y B) y una salida (Z). Responde a la expresión: Z = A · B

Compuertas Lógicas Compuerta “AND” A · B = Z 0 ·0 = ZBA ·1 = · 0 = · 1 = 1 1 1

Circuito Lógico Compuerta “AND” Z = A · B También es posible representar la función lógica, su tabla de verdad y su compuerta con los pulsadores NC, formando un “circuito lógico”.

Circuito Lógico Compuerta “AND” Z = A · B La luminaria se enciende cuando A y B son pulsados al mismo tiempo. Esto coincide con la TV cuando A y B toman el valor 1, haciendo que Z valga ZBA

Compuertas Lógicas Compuerta “OR” Una Compuerta OR de dos entradas es un dispositivo electrónico que posee dos entradas, a las que llegan los niveles de tensión de dos cables (A y B) y una salida (Z). Responde a la expresión: Z = A + B

Compuertas Lógicas Compuerta “OR” A + B = Z = ZBA = = = 1

Circuito Lógico Compuerta “OR” Z = A + B La luminaria se enciende cuando A o B son pulsados. Esto coincide con la TV cuando A o B toman el valor 1, haciendo que Z valga ZBA

Compuertas Lógicas Compuerta “SEGUIDOR” Una Compuerta SEGUIDOR es un dispositivo electrónico que actúa como buffer: mantiene en la salida, el valor que se encuentra a la entrada. Responde a la expresión: Z = A

Compuertas Lógicas ZA Compuerta “SEGUIDOR” A = Z = 10 = 0 1

Circuito Lógico Compuerta “SEGUIDOR” Z = A La luminaria se enciende cuando A es pulsado. Esto coincide con la TV cuando A toma el valor 1, haciendo que Z valga ZA

Compuertas Lógicas Compuerta “INVERSOR” Una Compuerta INVERSOR es un dispositivo electrónico que enciende el cable que está en su salida, si el cable que está en su entrada se encuentra apagado, y viceversa. Puede decirse que uno es la negación del otro. Responde a la expresión:

Compuertas Lógicas Compuerta “INVERSOR” ZA 0 = = 0 10

Circuito Lógico Compuerta “INVERSOR” Z se activará si A toma el valor 0. Esto coincide con la TV cuando A toma el valor 0, haciendo que Z valga ZA

Compuertas Lógicas Compuerta “EXOR” Una compuerta EXOR u OR excluyente de dos entradas es un dispositivo electrónico que presenta dos entradas, a las que llegan los estados de las dos variables (A  B), y una salida, que genera en el cable (Z). Responde a la expresión:

Compuertas Lógicas Compuerta “EXOR” ZBA 0 0  0 1 · ·  1 1 · ·  11  · · 1 0 · ·

Circuito Lógico Compuerta “EXOR” Z se activará si A o B se activan, pero no al mismo tiempo Esto se refleja en la TV cuando A o B estan activados ZBA Pero cuando ambos se activan al mismo tiempo, Z vale 0.

Leyes de Algegra de Boole Algebra de circuitos lógicos El álgebra de Boole es una parte de la matemática que utiliza expresiones basadas en la lógica dual. Ley Conmutativa A + B = B + A Ley Asociativa A + (B + C) = (A + B) + C Ley Distributiva (del producto con respecto a la suma) A · (B + C) = A · B + A · C Ley Distributiva (de la suma respecto del producto) C + B · A = (C + B) · (C + A) Ley de AbsorciónLey de Doble Negación Ley de Morgan Sirve para transformar sumas lógicas en productos lógicos Y productos lógicos en sumas lógicas Relaciones de Morgan

Compuertas Derivadas Compuerta “NAND” Una compuerta NAND resulta de invertir la salida de una compuerta AND. Compuerta AND Invertimos la salida (NAND) Negamos de ambos lados Por ley de doble neg. Por ley de Morgan Expresión Booleana

Compuertas Lógicas Compuerta “NAND” ZBA

Circuito Lógico Compuerta “NAND” Z será igual a 0 sólo si A y B se presionan al mismo tiempo. Esto coincide con la TV cuando A y B son iguales a 1, haciendo que Z sea igual a 0.

Compuertas Derivadas Compuerta “NOR” Una compuerta NOR resulta de invertir la salida de una compuerta OR. Compuerta OR Invertimos la salida (NOR) Negamos de ambos lados Por ley de doble neg. Por ley de Morgan Expresión Booleana

Compuertas Lógicas Compuerta “NOR” ZBA

Circuito Lógico Compuerta “NOR” Z será igual a 1 si A o B no se presionan en ningún momento Esto coincide con la TV cuando A y B son iguales a 0, haciendo que Z sea igual a 1.

Compuertas Derivadas Compuerta “EX-NOR” Una compuerta EX-NOR resulta de invertir la salida de una compuerta NOR. Compuerta NOR Invertimos la salida (EX-NOR) Negamos de ambos lados Por ley de Morgan Nuevamente Morgan Expresión Booleana Al distribuir nos queda: } } 0 0

Compuertas Lógicas Compuerta “EX-NOR” ZBA

Circuito Lógico Compuerta “EX-NOR” Como siempre, la TV se corresponde con el circuito, la compueta y la expresión booleana. ABZ

Principio de Dualidad ► Cualquier propiedad en el álgebra de Boole sigue siendo valida si se intercambian las operaciones (+) y (·) y además se intercambian los valores 0 y 1. Definición ► Equivalencia entre funciones: dos expresiones booleanas son equivalentes si tienen igual tabla de verdad. Una expresión lógica le corresponde una sola tabla de verdad, mientras que una tabla de verdad puede formarse algebraicamente mediante diversas funciones equivalentes. ► Asimismo, circuitos lógicos que corresponden a expresiones algebraicas equivalentes tendrán la misma tabla de funcionamiento por lo que podrán reemplazarse unos por otros. ► La equivalencia se obtiene aplicando el principio de dualidad. Ejemplo: A + 0 = A A · 1 = A

Circuitos Equivalentes ► Convertimos una suma de productos, en un producto negado de productos negados... Equivalencias And-Or Y Nand-Nand Z1 = A + B·C + D·E = A partir de un circuito determinado, su función equivalente puede ser obtenida de dos formas: Primer método Negamos ambos extremos del cable, que por la propiedad de la doble negación no afecta la función original. Aplicamos el concepto de funciones equivalentes en la última compuerta, obteniendo así todas NAND. Segundo método Aplicamos la equivalencia de funciones en la última compuerta: reemplazamos la compueta OR por su dual AND y negamos sus entradas y salidas que no están negadas en el circuito original. Como último paso, se desplazan las negaciones hacia el otro extremo del cable. De esta forma obtenemos un circuito compuesto por todas compuertas NAND.

Circuitos Equivalentes Equivalencias Or-And y Nor-Nor Z = (P + Q) · (R + S) · T = A partir de un circuito determinado, su función equivalente puede ser obtenida de dos formas: Primer método Negamos ambos extremos del cable, que por la propiedad de la doble negación no afecta la función original. Aplicamos el concepto de funciones equivalentes en la última compuerta, obteniendo así todas NOR. Segundo método Aplicamos la equivalencia de funciones en la última compuerta: reemplazamos la compueta AND por su dual OR y negamos sus entradas y salidas que no están negadas en el circuito original. Como último paso, se desplazan las negaciones hacia el otro extremo del cable. De esta forma obtenemos un circuito compuesto por todas compuertas NOR. De un producto de sumas se pasa a una suma negada, de sumas negadas.

Funciones Equivalentes Utilidad A una función lógica le corresponde una única tabla de verdad, mientras que a una misma tabla de verdad se le puede asociar diferentes expresiones equivalentes. Esto permite reemplazar un circuito por otro, según las necesidades técnicas y/o económicas que se posean. Más especificamente, la utilidad del concepto de funciones equivalente es la posibilidad de utilizar menor cantidad de chips para la implementación de un circuito. Si queremos implementar la función Z=(P+Q)·(R+S), deberíamos hacerlo: Entonces, una vez aplicado el concepto de funciones equivalentes y obtenida la expresión, la implementación de chips sería: La nueva expresión sería: De esta forma podemos ver que, a diferencia del primer caso, estamos utilizando sólo UN chip.

Compuertas Lógicas Comportamiento a) Las entradas están puenteadas.

Compuertas Lógicas Comportamiento b) Una de las entradas trabaja como señal de control.

Compuertas Lógicas Comportamiento c) La señal de salida realimenta a la de entrada.