Expresión genética: Transcripción

Slides:



Advertisements
Presentaciones similares
La síntesis de proteínas
Advertisements

INFORMACIÓN GENÉTICA Y PROTEÍNAS
CURSO de Actualizaciones en Genética Molecular y sus aplicaciones
“Introducción a regulación génica ”
Dra. Judith García de Rodas, Salón
ARNs Sintesis y Maduración
Replicación 2ºBachillerato.
Colegio Hispano Americano
SEMINARIO 8 BIOLOGÍA CELULAR TRANSCRIPCIÓN Y PROCESAMIENTO DEL ARN
4.2 TRANSCRIPCIÓN DE PROCARIOTAS
CODIGO GENETICO SINTESIS PROTEICA.
Las bases moleculares de la herencia
Replicación, Transcripción y Traducción en Procariota
RNA NATURALEZA QUIMICA.
expresión diferencial del genoma
4.1 Tipos y funciones de RNAs
El código genético y el mecanismo de expresión
Estructura y regulación génica
GENÉTICA MOLECULAR Chema Ariza | Biología | C.C Virgen Inmaculada- Santa María de la Victoria.
Estructura de ACIDOS NUCLEICOS.
Transcripción Expresión génica. Transcripción ADN versus ARN.
EXPRESIÓN DEL MENSAJE GENÉTICO
Posibles puntos de regulación de la expresión génica
4.- Transcripción Alonso Gracia Montes.
- GEN - TRANSCRIPCION - TRADUCCION
Síntesis de proteínas.
Código genético y el mecanismo de expresión
12. Control de la expresión génica en eucariontes
FLUJO DE INFORMACIÓN GÉNICA 10/04/2017 Mabel S..
TRANSCRIPCIÓN Y TRADUCCIÓN DE LA INFORMACIÓN
TRANSCRIPCIÓN Y PROCESAMIENTO DEL ARN
Expresión génica.
LA EXPRESIÓN GENÉTICA Esta obra está bajo una licencia Attribution-NonCommercial-ShareAlike 3.0 Unported de Creative Commons. Para ver una copia de esta.
Síntesis de ARN Objetivos: Explicar el proceso de síntesis de ARN.
MOLÉCULA QUE CONTIENE LA INFORMACION GENÉTICA
12. Control de la expresión génica en eucariontes
ESTRUCTURA Y REGULACIÓN GÉNICA
Modificaciones del "Dogma Central de la Biología Molecular" Temin Modificaciones del "Dogma Central de la Biología Molecular"
ESTRUCTURA Y SINTESIS DE RNA. La informaciòn genetica se encuentra en el DNA, pero el RNA hace las copias funcionales del DNA. La cadena de DNA sirve.
EXPRESIÓN GENÉTICA CURSO: BIOLOGIA Blgo. César Abel Sebastián Gonzáles
Antes de la mitosis (el proceso por el cual no reproductoras o dividir las células somáticas) y la meiosis (proceso mediante el cual los precursores de.
Transcripción / Traducción
Replicación del ADN Cuando una célula se reproduce, necesita también duplicar su información genética, pues la información contenida en ella debe mantenerse.
EXPRESION GENICA EN PLANTAS
Traducción de proteínas
Biología Molecular Claudia De Santiago García
Tema 8. Transcripción.
1. Inicio de la transcripción
GENETICA MOLECULAR.
BIOLOGÍA MOLECULAR Alejandrina Vega
MECANISMOS DE REPLICACIÓN, TRANSCRIPCIÓN Y TRADUCCIÓN EN EUCARIOTAS
TEMA 4.7 mRNAs EUCARIÓTICOS.
Ácido nucleico.
MECANISMOS DE REPLICACIÓN, TRANSCRIPCIÓN Y TRADUCCIÓN EN EUCARIOTAS
Del ADN a la proteína: expresión génica
TRANSCRIPCIÓN.
Replicación del DNA Transcripción del DNA Traducción del mRNA
Ácidos nucleicos y síntesis de proteínas ASPECTOS BÁSICOS
LA EXPRESIÓN GENÉTICA Esta obra está bajo una licencia Attribution-NonCommercial-ShareAlike 3.0 Unported de Creative Commons. Para ver una copia de esta.
DEL ADN AL ARN MENSAJERO
BIOLOGIA MOLECULAR Y CELULAR: ALGUNOS CONCEPTOS BASICOS.
Biología Molecular Alumno: Olga Rosario Meraz Z Flores Transcripción: Temas
Tema 6, 7, 8 y 9 Universidad de Carabobo Facultad de Ciencias de la Salud Escuela de Medicina“Dr. Witremundo Torrealba" Departamento de Fisiología y Bioquímica.
BOLILLA 11 Metabolismo del DNA: Replicación.
LA EXPRESIÓN GENÉTICA Esta obra está bajo una licencia Attribution-NonCommercial-ShareAlike 3.0 Unported de Creative Commons. Para ver una copia de esta.
Como se regula este proceso?
Tema 7 Expresión génica: transcripción.
Expresión génica: transcripción
1 Dr. Antonio Barbadilla Tema 7 Expresión génica: transcripción.
1 Dr. Antonio Barbadilla Tema 7 Expresión génica: transcripción.
Transcripción de la presentación:

Expresión genética: Transcripción

El “dogma” central del flujo de la información genética -> el RNA como intermediario Propiedades del RNA Clases de RNA El mRNA, el mensajero La transcripción: iniciación, elongación y terminación La transcripción en eucariotas: modificaciones (procesamiento) transcripcionales, intensificadores Transcripción inversa y todas las posibles direcciones del transferencia de información genética Actividad enzimática del RNA RNA de interferencia (RNAi)

El “dogma” central del flujo de la información genética

Propiedades del RNA Una cadena, no doble hélice. Apareamiento intramolecular -> RNA contorsionista molecular Azúcar ribosa (OH en el carbono 2’) Esqueleto azúcar-fosfato en posiciones 5’-3’ del azúcar como DNA Uracilo en vez de Timina, se empareja con Adenina, y también con Guanina cuando se pliega (no en la transcripción). Catalizador biológico -> Ribozima

RNA: contorsionista molecular

RNA vs DNA

Tipos de RNA RNA mensajero (mRNA) RNA funcional RNA de transferencia (tRNA) RNA ribosómico (rRNA) RNA nuclear pequeño (snRNA) MicroRNA (miRNA) RNA de interferencia pequeño (siRNA)

TRANSCRIPCIÓN Función: la formación del transcrito de RNA mediante la catálisis de la unión de nucleótidos libres a la cadena molde del DNA formando una monohebra de RNA. Propiedades que hacen posible la síntesis del transcrito de RNA 1. COMPLEMENTARIEDAD ENTRE BASES A-U, C-G, G-C, T-A 2. UNIÓN DE PROTEÍNAS ESPECIFICAS AL DNA (RNA Polimerasa y otras proteínas que actúan como factores de transcripción).

Nomenclatura de las cadenas en relación a la transcripción

Orientación y nomenclatura de las cadenas en relación a la transcripción (5)’ CGCTATAGCG (3’)  cadena no codificadora del DNA (3’) GCGATATCGC (5’)  cadena molde del DNA (5’) CGCUAUAGCG (3’)  transcrito de RNA

¿Qué cadena de la doble hélice es la codificadora? Depende de cada gen, no es un propiedad del cromosoma. Orientación de la transcripción

Orientación de la transcripción

RNA polimerasa Enzima compleja, no requiere primer (cebador), no funciona en la corrección de errores Procariotas: sólo un tipo. Con múltiples subunidades. E. Coli : factor sigma iniciación + CORE (holoenzima) Eucariotas: 3 tipos I -> rRNA II -> mRNA III -> tRNA, snRNA, rRNA 5S

APOENZIMA = 4 subunidades RNA polimerasa PROCARIOTAS 2 subunidades  = ensamblan el enzima y promueven interacciones  = actividad catalítica ’ = se une al DNA ω = ensamblaje y regulación expresión  = Se une a las regiones promotoras y posiciona a la holoenzima en el sitio de inicio APOENZIMA = 4 subunidades

RNA polimerasa Ciclo de la RNA pol bacteriana

Etapas de la transcripción Iniciación: Secuencias promotoras (se une la RNA polimerasa) Procariotas: Secuencias consenso Pribnow (-10 pb) y región -35 pb Eucariotas: Caja TATA (-25 pb) y CAAT (-70 pb)

Etapas de la transcripción Iniciación: Secuencias promotoras (se une la RNA polimerasa) Procariotas: Secuencias consenso Pribnow (-10 pb aguas arriba) y región -35 pb Eucariotas: Caja TATA (-25 pb) y CAAT (-70 pb)

Etapas de la transcripción Iniciación: Secuencias promotoras (se une la RNA polimerasa) Procariotas: Secuencias consenso Pribnow (-10 pb aguas arriba) y región -35 pb

Unwinding spans in a region of about 10 basepairs from left end of the Pribnow box and extending about 20 base pairs after the position of the first transcribed base.

Etapas de la transcripción Elongación: 5’->3’ Enrollamiento aguas arriba (5’) y desenrollamiento aguas abajo (3’) del DNA

Etapas de la transcripción Terminación: Dependiente del factor Rho Independiente de Rho

Terminación: DNA Palíndrome estructura secundaria “dabale arroz a la zorra el abad”

Terminación: mecanismo intrínseco -> DNA Palíndrome, estructura tallo-bucle

Estructura del gen y el mensajero procariota

Estructura mensajero eucariota

RNAs Polimerasa en Eucariotas Transcripción Eucariotas RNAs Polimerasa en Eucariotas 1- Existen tres tipos de RNA polimerasa La I, la II y la III RNA polimerasa I, 13 subunidades. Se localiza en el núcleo y en el nucleolo. -> Síntesis de rARN 45S. RNA polimerasa II, 12 subunidades. Se localiza en el nucleoplasma. -> Síntesis de los hnRNA (transcrito primario), los precursores de los mRNA. RNA polimerasa III, 17 subunidades. Se localiza en el nucleoplasma. -> Síntesis rRNA 5S y tRNA.

Factores de Transcripción Generales GTFs Altamente conservados TATA Box –Binding Protein TFIID

Transcripción Eucariotas

Activadores

Transcripción Eucariotas

Transcripción Eucariotas

Transcripción Eucariotas

Autosplicing en Tetrahymena (Tom Cech 1981) RIBOZIMA

Eliminación de intrones por corte (cutting) y empalme (splicing)

Regla GU-AG

Empalmosoma (Spliceosome)

información en eucariotas Flujo de la información en eucariotas

Diferencias eucariotas - procariotas

Diferencias eucariotas - procariotas Característica Procariota Eucariota Promotor Cajas y zona operadora Solo cajas Cistrón Policistrones Monocistrones RNA polimerasa una sola, con 5 subunidades distintas 3 RNA polimerasas. Estabilización El RNA recién transcrito, no tiene. Contiene, al comienzo de la cadena, 7-metil-guanosina o CAP, y al final de la cadena, una secuencia poli A. Comienzo RNA pol, se autoacopla al promotor RNA pol, necesita la presencia de proteínas de iniciación, que se unan antes que ella al ADN. Intrones No tiene Tiene y se eliminan mediante cutting- splicing (corte y empalme). Lugar de acción Inmediatamente, al ser creado En el citoplasma. Contiene, al comienzo de la cadena, 7-metil-guanosina o CAP, y al final de la cadena, una secuencia poli A. En el citoplasma.

Transcripción reversa

El “dogma” central revisado

RNA World

RNA de interferencia RNA interference

A group of small RNA molecules, distinct from but related to siRNAs, have been identified in a variety of organisms. These small RNAs, called microRNAs (miRNAs), are transcribed as parts of longer RNA molecules that can be as long as 1000 nt. The RNAs are processed in the nucleus into hairpin RNAs of 70-100 nt by the dsRNA-specific ribonuclease Drosha.  The hairpin RNAs are transported to the cytoplasm via a transportin-5 dependent mechanism where they are digested by a second, double-strand specific ribonuclease called Dicer.  The resulting 19-23 mer miRNA is bound by a complex that is similar to the RNA-Induced Silencing Complex (RISC) that participates in RNA interference (RNAi).  In animals, the complex-bound, single-stranded miRNA binds specific mRNAs through sequences that are significantly, though not completely, complementary to the mRNA.  By a mechanism that is not fully characterized— but which apparently does not involve mRNA degradation as in RNAi— the bound mRNA remains untranslated, resulting in reduced expression of the corresponding gene. The function of most miRNAs is not known. A number of miRNAs, however, seem to be involved in gene regulation. Some of these miRNAs, including lin-4 and let-7, inhibit protein synthesis by binding to partially complementary 3' untranslated regions (3' UTRs) of target mRNAs. Others, including the Scarecrow miRNA found in plants, function like siRNA and bind to perfectly complementary mRNA sequences to destroy the target transcript (1). Some miRNAs, such as lin-4, let-7, mir-14, mir-23, and bantam, have been shown to play critical roles in cell differentiation and tissue development (2,3). Others are believed to have similarly important roles because of their differential spatial and temporal expression patterns. There is speculation that miRNAs may represent a new aspect of gene regulation, and there is intense interest among researchers around the world in their targets and mechanism of action.

Links de interés DNA, RNA, protein Image Library of Biological Macromolecules - DNA DNA berkeley DNA Learning Center Beginner's guide to Molecular Biology Glosario de Genética molecular Central Dogma Animación de la transcripición Animación del splicing Animación del RNA de interferencia