La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

1/42 Mg. Samuel Oporto Díaz Lima, 9 de mayo 2005 Programación Lógica: Semántica INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS.

Presentaciones similares


Presentación del tema: "1/42 Mg. Samuel Oporto Díaz Lima, 9 de mayo 2005 Programación Lógica: Semántica INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS."— Transcripción de la presentación:

1 1/42 Mg. Samuel Oporto Díaz Lima, 9 de mayo 2005 Programación Lógica: Semántica INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS

2 2/42 Tabla de Contenido 1.SemánticaSemántica 2.BibliografíaBibliografía

3 3/42 SINTAXIS Y SEMÁNTICA

4 4/42 Átomos Los átomos (o constantes simbólicas) pueden tomar los siguientes nombres: –Cadenas de letras, dígitos y guión bajo, comenzando por una letra minúscula: juan, x, el_pais –Cadenas de caracteres especiales: + - * / = :. & _ ~:, --->,.:., ::=,... –Cadenas de caracteres entre comillas simples: 'El_Salvador', 'Nueva_Guinea', 'Juan'

5 5/42 Números Enteros: 1, 34, -5, 0 Reales: 3.14, , –No son muy utilizados, pues Prolog es un lenguaje de programación simbólica.

6 6/42 Variables Cadenas de letras, dígitos y guión bajo, que comienzan con letra mayúscula, o con el guión bajo: X Result _ Lista_de_tareas _x23 El nombre _ está reservado para variables "anónimas". El alcance de una variable es en la cláusula (excepto _): abuelo(X,Y) :- padre(X,Z), padre(Z,Y). padre(X,Y) :- hijo(Y,X). padreEHijo(X) :- padre(X,_), padre(_,X).

7 7/42 Variables y Constantes Variables Se inician con mayúscula. constantes Se inician con minúscula o con _ Si el objeto no interesa, entonces usa la variable anónima (_)

8 8/42 Estructuras Son objetos que tienen varios componentes. –La estructura ha de tener un nombre (functor) –El functor tiene atributos: los elementos de la estructura. Por ejemplo: –date(1, mayo, 2001) : puede usarse para representar el 1 de mayo de 2001 –date(Dia, mayo, 2001): para representar cualquier día de mayo de 2001.

9 9/42 Ejercicios ¿Cuáles de los siguientes son objetos morfológicamente correctos? 1.Diana 2.diana 3._diana 4.'Diana' 5.'Diana se va al sur' 6.va(diana, sur) (x,y) 9.+(north, west) 10.three(Black(Cats)) 11.f 12.vacio 13.juan_perez 14.Juan Perez 15.A meses 17.Vacio 18.juan-perez 19._juan b

10 10/42 Unificación (I) Dados dos términos, decimos que unifican si: –Son idénticos, o –Las variables de los dos términos se pueden instanciar a objetos de manera que los dos términos lleguen a ser idénticos. Ejemplo: date(D,M,2001) date(D1, mayo, A1) D = D1 M = mayo A1 = 2001

11 11/42 Unificación (II) Siempre se escoge la unificación más general: date(D,M,2001) date(D1, mayo, A1) D = D1D = 1D = siete M = mayoD1 = 1D1 = siete A1 = 2001M = mayoM = mayoA1 = 2001

12 12/42 Unificación (III) Las reglas generales de la unificación son: –Si S y T son constantes, han de ser el mismo objeto. –Si S es una variable y T es cualquier cosa, unifican (S se instancia a T); y viceversa. –Si S y T son estructuras, unifican siempre y cuando: El nombre del functor sea el mismo Todos sus atributos unifican variable constante

13 13/42 Ejemplo date(D, mes(M), 2001) date(D1, mes(mayo), A1) date(15, mes(M), Y) _________________ date(15,mes(mayo),2001) D = D1 = 15 M = may A1 = Y = 2001

14 14/42 Semántica declarativa Los programas en Prolog se pueden entender como teorías lógicas: P :- Q, R Si Q y R son ciertos, P es cierto Un objetivo G se cumple si: –Existe una cláusula C en el programa tal que: Existe una instancia I de C tal que 1.La cabeza de I es idéntica a G 2.Todos los objetivos en el cuerpo de I son ciertos

15 15/42 Semántica declarativa: ejemplo Objetivo G: abuelo(juan, Nieto). Cláusula C: abuelo(X,Y) :- padre(X,Z), padre(Z,Y) Instancia I: abuelo(juan,marta) :- padre(juan,luis), padre(luis,marta) –La cabeza de I es idéntica a G. –Los objetivos en el cuerpo de I todos se cumplen.

16 16/42 Semántica procedimental Se refiere a la manera en que Prolog resuelve los objetivos. –Las cláusulas de la BD están en un cierto orden. –Se selecciona siempre la primera disponible. Si no se llega a la solución, se da marcha atrás (backtracking) y se busca otra. –El orden de las cláusulas puede afectar a la ejecución, especialmente a la eficiencia.

17 17/42 Peligro de bucle infinito Si tenemos una cláusula del tipo: padre(X,Y) :- padre(X,Y) Aunque lógicamente correcta, puede meter al intérprete en bucle cerrado.

18 18/42 Definiendo predicados recursivos, hay que tener cuidado en poner la condición de finalización en primer lugar. pred(X,Y) :- pred(Z,Y), parent(X,Z). pred(X,Y) :- parent(X,Y). pred(X,Y) :- parent(X,Z), pred(Z,Y). pred(X,Y) :- parent(X,Y). pred(X,Y) :- pred(Z,Y), parent(X,Z). pred(X,Y) :- parent(X,Y). pred(X,Y) :- parent(X,Z), pred(Z,Y). Peligro de bucle infinito pred2(juan,marta)

19 19/42 LISTAS

20 20/42 Listas (I) Una lista es una secuencia de elementos (átomos, estructuras, o listas). Se representan entre corchetes: [juana, tenis, carlos, futbol] Una lista vacía se representa como: []

21 21/42 Listas (II) La representación interna es con una estructura llamada ".", con dos elementos: cabeza y cola:.(juana,.(tenis,.(carlos,.(futbol,[])))).(tenis,.(carlos,.(futbol,[]))).(carlos,.(futbol,[])).(futbol,[]) [] La cola de toda lista puede ser: –Otra lista, usando el functor. –La lista vacía [].

22 22/42 Listas (III) - Ejemplo ?- List1 = [a,b,c], List2 =.(a,.(b,.(c, []))), List3 = [a,List1,List2]. List1 = [a,b,c] List2 = [a,b,c] List3 = [a,[a,b,c],[a,b,c]]

23 23/42 Separación de la cabeza y la cola Se puede especificar explícitamente la separación entre la cabeza y la cola, mediante una barra vertical: ?- L = [a,b,c], R = [cabeza|L] L = [a,b,c] R = [cabeza,a,b,c] ?- L=[a,b,c], R=[el1,el2|L], U=[a|[]] L = [a,b,c] R = [el1,el2,a,b,c] U = [a]

24 24/42 Operaciones con listas (I) Miembro de una lista: miembro(X, [X|Tail]). miembro(X, [Head|Tail]) :- miembro(X, Tail). ?- miembro(a, [a,b,c]). yes ?- miembro([b,c], [a,[b,c]]). yes ?- miembro(b, [a,[b,c]]). no

25 25/42 Ejercicio Diseña una regla para determinar si un elemento pertenece a una lista o no. Sugerencia, una carta esta en un mazo de cartas si es la primera carta o si está en el resto. miembro(E,L) :- L=[X|Y],X=E. miembro(E,L) :- L=[X|Y],miembro(E,Y).

26 26/42 Ejercicio Diseña una regla para determinar si una variable es una lista o no. es_lista([]). es_lista([_|_]). Diseña una regla para determinar el tamaño de una lista. nel([],0). nel([X|Y]):-nel(Y,M),N is M+1.

27 27/42 Operaciones con listas (II) Concatenación: conc([], L, L). conc([X|L1], L2, [X|L3]) :- conc(L1,L2,L3). ?- conc([a,b,c],[1,2,3],L). L = [a,b,c,1,2,3] ?- conc([a,b],L2,[a,b,[],c]). L2 = [[],c]

28 28/42 Operaciones con listas (II) ?- conc(L1,L2,[a,b]). L1=[] L2=[a,b] ; L1=[a] L2=[b] ; L1=[a,b] L2=[] ; no

29 29/42 Ejercicio Qué valores obtiene el Prolog para la siguiente consulta. ?- conc(Before,[3,X|After],[1,2,3,4,5]). Before=[1,2] X=4 After=[5];

30 30/42 Ejercicios Escribe un predicado para añadir un elemento a una lista. insertar(E,L1,L2) Añadir E en la lista L1 para obtener L2 insertar(E,L,[E|L]).

31 31/42 Ejercicios Escribe un predicado para eliminar un elemento de una lista. borrar(X,[X|Y],Y). borrar(X,[Z|L],[Z|M]):-borrar(X,L,M). L MZ Z LX M

32 32/42 Ejercicio para la casa Define el predicado "last" que devuelva el último elemento de una lista, de dos maneras: –Basándose en el predicado "conc" –Sin utilizarlo.

33 33/42 OPERADORES

34 34/42 Operadores (I) Aunque las listas son estructuras.(Head,Tail), se pueden escribir entre corchetes por claridad. Otros predicados, también por claridad, se pueden escribir como operadores (p.ej., con notación infija). Ejemplo: –+(3, 5) –3 + 5

35 35/42 Operadores (II) - Aritméticos Existen operadores predefinidos para operaciones aritméticas +Suma -Resta *Multiplicación /División //División entera **Elevación a potencia modMódulo (resto de división)

36 36/42 Operadores (III) - Evaluación Los operadores son como cualquier otro predicado de prolog. Por omisión, no se evalúan. ?- X = X = Se puede forzar la evaluación utilizando el operador "is". ?- X is X = 3

37 37/42 Operadores (IV) – Operador "is" El argumento izquierdo ha de ser una variable. El argumento derecho será una expresión. Todas las variables en esa expresión han de estar asociadas a valores. Los operadores en prolog tienen todos asociado un número de precedencia. Los de menor número se ejecutan antes (ej: ** antes que *, antes que +, antes que is)

38 38/42 Operadores (V) - Ejemplo Máximo común divisor de dos números: gcd(X,X,X). gcd(X,Y,D) :- X < Y, Y1 is Y – X, gcd(X, Y1, D). gcd(X,Y,D) :- Y < X, gcd(Y,X,D).

39 39/42 Ejercicios Define un predicado que calcule la longitud de una lista. Define un predicado que calcule el menor número dentro de una lista de números. Define un predicado con un único argumento, que devuelva "true" si los elementos en esa lista están ordenados.

40 40/42 BACKTRACKING

41 41/42 Previniendo el backtracking (I) Cuando prolog tiene que satisfacer una consulta, prueba todas las posibilidades (realizando backtracking) hasta encontrar las asignaciones de valores que la satisfagan. En el intérprete, si se piden más soluciones, se continúan buscando mediante backtracking.

42 42/42 Ejemplo (I) f(x) = f(X,0) :- X < 3. f(X,2) :- 3 =< X, X < 6. f(X,4) :- 6 =< X. Ejemplo: ?- f(1,Y) 0 si x < 3 2 si x >= 3 y x < 6 4 si x >= 6

43 43/42 Ejemplo(II) f(X,0) :- X < 3, !. f(X,2) :- 3 =< X, X < 6, !. f(X,4) :- 6 =< X. :- f(1,Y), 2 < Y. no :- f(7,Y). Y = 4

44 44/42 Ejemplo(III) f(X,0) :- X < 3, !. f(X,2) :- X < 6, !. f(X,4). :- f(1,Y). Y = 0 ; Y = 2 ; Y = 4

45 45/42 Corte Sea G el objetivo a satisfacer. Si entre los antecedentes de G se encuentra un corte !, –El corte inmediatamente se da por satisfecho –Todas las alternativas a reglas para G dejan de considerarse –Todas las alternativas a los antecedentes previos al corte dejan de considerarse

46 46/42 Corte (II) c(X) :- p(X),q(X),r(X),!,s(X),t(X),u(X). c(X) :- v(X). a(X) :- b(X),c(X),d(X). a(maria). ?- a(X). Suponemos que b(X) se cumple. Suponemos que p,q,r se cumplen, y la X se instancia a un cierto valor. ! también se cumple (automáticamente) Suponemos que s(X) falla. Entonces: –No se permite intentar otras posibilidades para p(X), q(X) o r(X) –No se permite intentar con la regla c(X) :- v(X). –Sí se permite probar otra posibilidad de a: X se instancia a maria

47 47/42 Ejemplos usando el corte (I) max(X, Y, X) :- X >= Y. max(X, Y, Y) :- X < Y. max(X, Y, X) :- X >= Y, !. max(X, Y, Y). Requisito: el tercer argumento no debe estar instanciado. En caso contrario, se pueden obtener resultados no deseados: ?- max(3,1,1). yes

48 48/42 Ejemplos usando el corte (II) Añadir elementos a una lista add(X,L,L) :- member(X,L), !. add(X,L,[X|L]). Igual que antes, el tercer argumento no debe estar instanciado al invocar este predicado en el intérprete.

49 49/42 Ejercicios (I) Sea el siguiente programa Prolog: p(1). p(2) :- !. p(3). Escribir las respuestas a las siguientes consultas: ?- p(X). ?- p(X), p(Y). ?- p(X), !, p(Y).

50 50/42 Ejercicios (II) La siguiente relación clisifica números en positivos o negativos: class(Number, positive) :- Number > 0. class(0, zero). class(Number, negative) :- Number < 0. Defínelo de manera más eficiente usando cortes.

51 51/42 Ejercicios (III) Escribe, con y sin cortes, el procedimiento split, que divide una lista en dos sublistas, la primera con los números positivos, y la segunda con los negativos. ?- split([3,-1,0,5,-2],[3,0,5],[-1,-2]). yes

52 52/42 Negación como fallo Para evitar la aplicación de una regla, se puede forzar el fallo con una combinación del corte, y la constante fail. –fail es un objetivo que nunca se satisface. Por ejemplo, Todos los pájaros, excepto el avestruz y el pingüino, vuelan: vuela(X) :- pinguino(X), !, fail. vuela(X) :- avestruz(X), !, fail. vuela(X) :- pajaro(X).

53 53/42 Comprobación de diferencia: different(X,X) :- !, fail. different(X,Y). o bien: different(X,Y) :- X = Y, !, fail ; true. donde true es un objetivo que siempre se cumple.

54 54/42 Predicado de negación not(P) :- P, !, fail ; true Muchos intérpretes de prolog traen el predicado not predefinido, con un operador asociado \+ vuela(X) :- pajaro(X), \+ pinguino(X), \+ avestruz(X).

55 55/42 Problemas con corte y negación Corte: Los programas ya no corresponden a la definición declarativa: el orden de las cláusulas importa, y puede ser necesario forzar a que algún argumento sea una variable no instanciada. Negación: No corresponde a una negación lógica, sino al hecho de que no hay evidencia para demostrar lo contrario.

56 56/42 Problema con negación – Ejemplo Ejemplo de restaurantes: buena_comida(el_meson). caro(el_meson). buena_comida(casa_paco). razonable(Restaurante) :- \+ caro(restaurante). ?- buena_comida(X), razonable(X). X = casa_paco ?- razonable(X), buena_comida(X). no

57 57/42 Problema con negación – Causa En Prolog, una consulta con una variable no instanciada se satisface si hay al menos una asignación de valores a la variable que la cumpla: buena_comida(X) -> X = casa_paco Al usar la negación, esa consulta pasa a ser cierta si el argumento de la negación fue falso, es decir, si ninguna asignación posible de valores cumplió la fórmula: not(razonable(X)) = no(existe X tal que X razonable) = para todo X, X no es razonable

58 58/42 Negación - Ejercicios hombre(juan). hombre(carlos). mujer(maria). mujer(laura). padre(juan,maria). padre(juan,carlos). madre(laura,maria). madre(laura,carlos). esposo(juan,laura). esposo(laura,juan). soltero(X) :- \+ esposo(X,Y). sinHijos(X) :- \+ padre(X,Y), \+ madre(X,Z). ?- soltero(juan). ?- soltero(carlos). ?- soltero(X). ?- sinHijos(juan). ?- sinHijos(carlos). ?- sinHijos(X). ?- soltero(X), sinHijos(X). ?- hombre(X), soltero(X), sinHijos(X).

59 59/42 Bibliografía AIMA. Capítulo 4, primera edición. AIMA. Chapter 4, second edition.

60 60/42 PREGUNTAS


Descargar ppt "1/42 Mg. Samuel Oporto Díaz Lima, 9 de mayo 2005 Programación Lógica: Semántica INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS."

Presentaciones similares


Anuncios Google