La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Geheimnis der dunklen.

Presentaciones similares


Presentación del tema: "Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Geheimnis der dunklen."— Transcripción de la presentación:

1 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Geheimnis der dunklen Materie Cosmology and the Dark Universe Cosmology and the Dark Universe Georg Raffelt, Max-Planck-Institut für Physik, München Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico

2 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Concordance Model of Cosmology A Friedmann-Lemaître-Robertson-Walker model with the following parameters perfectly describes the global properties of the universe The observed large-scale structure and CMBR temperature fluctuations are perfectly accounted for by the gravitational instability mechanism with the above ingredients and a power-law primordial spectrum of adiabatic density fluctuations (curvature fluctuations) P(k) k n Expansion rate Age Vacuum energy Baryonic matter Power-law index Spatial curvature Cold Dark Matter

3 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-CityTitle Dark Energy 73% (Cosmological Constant) Neutrinos Neutrinos 0.1 2% 0.1 2% Dark Matter 23% Ordinary Matter 4% (of this only about 10% luminous) 10% luminous)

4 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Expansion of Different Cosmological Models Time (billion years) Adapted from Bruno Leibundgut Cosmic scale factor a today M = 0 M = 0 9 M = 1 M = 1 M = 0.3 M = 0.3 = 0.7 = 0.7

5 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Dark Matter vs. Dark Energy Dark Matter Dark Energy Acts graviationally like ordinary matter (attractive force) Provides negative pressure Provides negative pressure Anti-gravitation of the universe Anti-gravitation of the universe Probably new form of weakly interacting particles Cosmological constant (classical GR)? Cosmological constant (classical GR)? Vacuum energy of quantum fields? Vacuum energy of quantum fields? Quintessence (new scalar field)? Quintessence (new scalar field)? Dominates dynamics of galaxies, clusters, larger structures Plays no role on small scales (homogeneous, does not cluster) Decelerates cosmic expansion Accelerates cosmic expansion Possibly just an experimental problem (detect the dark matter particles!) Probably a fundamental theory problem

6 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Periodic System of Elementary Particles QuarksLeptons Charge +2/3 Up Charge 1/3 Down Charge 1 Electron Charge Charge e-Neutrino eedu Neutron Proton Proton QuarksLeptons Charge +2/3 Up Charm Top Gravitation Weak Interaction Strong Interaction Electromagnetic Interaction Charge 1/3 Down Strange Bottom Charge 1 Electron Muon Tau Charge Charge e-Neutrino -Neutrino -Neutrino ee d s b u c t 1. Family 2. Family 3. Family

7 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Geheimnis der dunklen Materie 3. Neutrinos in Cosmology Georg Raffelt, Max-Planck-Institut für Physik, München Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico

8 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Hans Bethe ( , Nobel prize 1967) Thermonuclear reaction chains (1938) Neutrinos from the Sun Solar radiation: 98 % light 2 % neutrinos 2 % neutrinos At Earth 66 billion neutrinos/cm 2 sec Reaction-chains Energy 26.7 MeV Helium

9 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Sun Glasses for Neutrinos? Several light years of lead Several light years of lead needed to shield solar needed to shield solar neutrinos neutrinos Bethe & Peierls 1934: Bethe & Peierls 1934: … this evidently means … this evidently means that one will never be able that one will never be able to observe a neutrino. to observe a neutrino. 8.3 light minutes

10 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City First Detection ( ) Fred Reines (1918 – 1998) Nobel prize 1995 Clyde Cowan (1919 – 1974) Detector prototype Anti-ElectronNeutrinosfromHanford Nuclear Reactor 3 Gammas in coincidence pp nn CdCd e+e+e+e+ e+e+e+e+ e-e-e-e- e-e-e-e-

11 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Inverse beta decay of chlorine 600 tons of Perchloroethylene Homestake solar neutrino Homestake solar neutrino observatory ( ) observatory ( ) First Measurement of Solar Neutrinos

12 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Cherenkov Effect Water Elastic scattering or CC reaction Neutrino LightLight Cherenkov Ring Electron or Muon (Charged Particle)

13 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Super-Kamiokande: Sun in the Light of Neutrinos

14 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City John Bahcall Raymond Davis Jr Missing Neutrinos from the Sun Homestake Chlorine 7 Be 8B8B8B8B CNO Measurement (1970 – 1995) Calculation of expected experimental counting rate from various source reactions

15 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Neutrino Flavor Oscillations Two-flavor mixing Bruno Pontecorvo (1913 – 1993) Invented nu oscillations Each mass eigenstate propagates as with Phase difference implies flavor oscillations OscillationLength sin 2 (2 ) Probability e Probability e z

16 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Three-Flavor Neutrino Parameters CP-violating phase CP-violating phase Solar Atmospheric CHOOZSolar/KamLAND 2 ranges hep-ph/ Atmospheric/K2K e e 1 SunNormal2 3 Atmosphere e e 1 SunInverted2 3 Atmosphere Tasks and Open Questions Precision for 12 and 23 Precision for 12 and 23 How large is 13 ? How large is 13 ? CP-violating phase ? CP-violating phase ? Mass ordering ? Mass ordering ? (normal vs inverted) (normal vs inverted) Absolute masses ? Absolute masses ? (hierarchical vs degenerate) (hierarchical vs degenerate) Dirac or Majorana ? Dirac or Majorana ?

17 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Weighing Neutrinos with KATRIN Sensitive to common mass scale m Sensitive to common mass scale m for all flavors because of small mass for all flavors because of small mass differences from oscillations differences from oscillations Best limit from Mainz und Troitsk Best limit from Mainz und Troitsk m < 2.2 eV (95% CL) m < 2.2 eV (95% CL) KATRIN can reach 0.2 eV KATRIN can reach 0.2 eV Under construction Under construction Data taking foreseen to begin in 2009 Data taking foreseen to begin in 2009

18 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City KATRIN Approaching (25 Nov 2006)

19 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Neutrino Thermal Equilibrium Cosmic expansion rate Friedmann equation Radiation dominates Expansion rate Condition for thermal equilibrium: > H Neutrinos are in thermal equilibrium for T 1 MeV corresponding to t 1 sec Neutrino reactions Dimensional analysis of reaction rate if T m W,Z Examples for neutrino processes GFGFGFGF

20 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Thermal Radiations GeneralBosonsFermions Energy density Energy density Pressure P Number density n Entropy density s

21 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Present-Day Neutrino Density Neutrino decoupling (freeze out) H = H = T 2.4 MeV (electron flavor) T 2.4 MeV (electron flavor) T 3.7 MeV (other flavors) T 3.7 MeV (other flavors) Redshift of Fermi-Dirac distribution (nothing changes at freeze-out) Temperature scales with redshift T = T (z+1) Electron-positron annihilation beginning at T m e = MeV QED plasma is strongly coupled QED plasma is strongly coupled Stays in thermal equilibrium (adiabatic process) Stays in thermal equilibrium (adiabatic process) Entropy of e + e transfered to photons Entropy of e + e transfered to photons Redshift of neutrino and photon thermal distributions so that today we have for massless neutrinos

22 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Cosmological Limit on Neutrino Masses A classic paper: A classic paper: Gershtein & Zeldovich Gershtein & Zeldovich JETP Lett. 4 (1966) 120 JETP Lett. 4 (1966) 120 Cosmic neutrino sea ~ 112 cm -3 neutrinos + anti-neutrinos per flavor m 40 eV m 40 eV For all stable flavors

23 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Weakly Interacting Particles as Dark Matter However, the idea of However, the idea of weakly interacting massive weakly interacting massive particles as dark matter particles as dark matter is now standard is now standard More than 30 years ago, More than 30 years ago, beginnings of the idea of beginnings of the idea of weakly interacting particles weakly interacting particles (neutrinos) as dark matter (neutrinos) as dark matter Massive neutrinos are no Massive neutrinos are no longer a good candidate longer a good candidate (hot dark matter) (hot dark matter)

24 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City What is wrong with neutrino dark matter? Galactic Phase Space (Tremaine-Gunn-Limit) m > eV Maximum mass density of a degenerate Fermi gas m > eV Spiral Spiral galaxies galaxies Dwarf Dwarf galaxies galaxies Nus are Hot Dark Matter Nus are Hot Dark Matter Ruled out Ruled out by structure formation by structure formation Neutrino Free Streaming (Collisionless Phase Mixing) At T < 1 MeV neutrino scattering in early universe ineffective At T < 1 MeV neutrino scattering in early universe ineffective Stream freely until non-relativistic Stream freely until non-relativistic Wash out density contrasts on small scales Wash out density contrasts on small scales NeutrinosNeutrinos Over-density

25 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Structure Formation in the Universe SmoothStructured Structure forms by Structure forms by gravitational instability gravitational instability of primordial of primordial density fluctuations density fluctuations A fraction of hot dark matter A fraction of hot dark matter suppresses small-scale structure suppresses small-scale structure

26 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Structure Formation with Hot Dark Matter Troels Haugbølle, Neutrinos with m = 6.9 eV Standard CDM Model Structure fromation simulated with Gadget code Cube size 256 Mpc at zero redshift

27 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Neutrino Free Streaming Transfer Function Hannestad, Neutrinos in Cosmology, hep-ph/ Transfer function P(k) = T(k) P 0 (k) P(k) = T(k) P 0 (k) Effect of neutrino free streaming on small scales T(k) = 1 8 / M T(k) = 1 8 / M valid for 8 / M 1 8 / M 1 Power suppression for FS 100 Mpc/h m = 0 m = 0.3 eV m = 1 eV

28 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Power Spectrum of Cosmic Density Fluctuations

29 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Some Recent Cosmological Limits on Neutrino Masses m /eV m /eV (limit 95%CL) Data / Priors Spergel et al. (WMAP) 2003 [astro-ph/ ] [astro-ph/ ]0.69 WMAP-1, 2dF, HST, 8 Hannestad 2003 [astro-ph/ ] [astro-ph/ ]1.01 WMAP-1, CMB, 2dF, HST Crotty et al [hep-ph/ ] [hep-ph/ ] WMAP-1, CMB, 2dF, SDSS & HST, SN Hannestad 2004 [hep-ph/ ] [hep-ph/ ]0.65 WMAP-1, SDSS, SN Ia gold sample, Ly- data from Keck sample Seljak et al [astro-ph/ ] [astro-ph/ ]0.42 WMAP-1, SDSS, Bias, Ly- data from SDSS sample Spergel et al [hep-ph/ ] [hep-ph/ ]0.68 WMAP-3, SDSS, 2dF, SN Ia, 8 Seljak et al [astro-ph/ ] [astro-ph/ ]0.14 WMAP-3, CMB-small, SDSS, 2dF, SN Ia, BAO (SDSS), Ly- (SDSS) Hannestad et al [hep-ph/ ] [hep-ph/ ]0.30 WMAP-1, CMB-small, SDSS, 2dF, SN Ia, BAO (SDSS), Ly- (SDSS)

30 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Weak Lensing A Powerful Probe for the Future UnlensedLensed Distortion of background images by foreground matter

31 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Sensitivity Forecasts for Future LSS Observations Kaplinghat, Knox & Song, astro-ph/ σ (m ν ) ~ 0.15 eV (Planck) σ (m ν ) ~ eV (CMBpol) CMB lensing Lesgourgues, Pastor & Perotto, hep-ph/ Planck & SDSS m > 0.21 eV detectable m > 0.21 eV detectable at 2 at 2 m > 0.13 eV detectable m > 0.13 eV detectable at 2 at 2 Ideal CMB & 40 x SDSS Abazajian & Dodelson astro-ph/ Future weak lensing survey 4000 deg 2 σ (m ν ) ~ 0.1 eV Wang, Haiman, Hu, Khoury & May, astro-ph/ Weak-lensing selected sample of > 10 5 clusters σ (m ν ) ~ 0.03 eV Hannestad, Tu & Wong astro-ph/ Weak-lensing tomography (LSST plus Planck) σ (m ν ) ~ 0.05 eV

32 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Fermion Mass Spectrum meVeVkeVMeVGeVTeV dsb Quarks (Q = 1/3) uct Quarks (Q = 2/3) Charged Leptons (Q = 1) e All flavors 3 Neutrinos

33 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-CityTitle Dark Energy 73% (Cosmological Constant) Neutrinos Neutrinos 0.1 2% 0.1 2% Dark Matter 23% Ordinary Matter 4% (of this only about 10% luminous) 10% luminous)

34 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Periodic System of Elementary Particles QuarksLeptons 2/3 2/3 c t Gravitation Weak Interaction Strong Intn Electromagnetic Intn 1/3 1/3 s b st Family 2 nd Family 3 rd Family ude Charge0 Matter Anti-QuarksAnti-Leptons 2/3 2/3 1/3 1/30 1 Strong Intn Electromagnetic Intn Antimatter Why is there no antimatter in the Universe? (Problem of Baryogenesis) 0 0 LeptonsAnti-Leptons Majorana Neutrinos are their own antiparticles Can explain baryogenesis by leptogenesis

35 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Baryogenesis in the Early Universe Sakharov conditions for creating the Baryon Asymmetry of the Universe (BAU) C and CP violation C and CP violation Baryon number violation Baryon number violation Deviation from thermal equilibrium Deviation from thermal equilibrium Particle-physics standard model Violates C and CP Violates C and CP Violates B and L by EW instanton effects Violates B and L by EW instanton effects (B L conserved) (B L conserved) However, electroweak baryogenesis not quantitatively However, electroweak baryogenesis not quantitatively possible within particle-physics standard model possible within particle-physics standard model Works in SUSY models for small range of parameters Works in SUSY models for small range of parameters Andrei Sakharov A.Riotto & M.Trodden: Recent progress in baryogenesis Ann. Rev. Nucl. Part. Sci. 49 (1999) 35

36 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Neutrinos Charged Leptons See-Saw Model for Neutrino Masses Diagonalize Diagonalize Lagrangian for Lagrangian for particle masses particle masses Dirac masses Dirac masses from coupling from coupling to standard to standard Higgs field Higgs field Heavy Heavy Majorana Majorana masses masses M j > GeV M j > GeV Light Majorana mass

37 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City See-Saw Model for Neutrino Masses Light Majorana mass N GeV 1 GeV GeV ChargedleptonsOrdinaryneutrinosHeavyright-handedneutrinos (no gauge interactions) interactions)

38 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Equilibrium abundance of heavy Majorana neutrinos W. Buchmüller & M. Plümacher: Neutrino masses and the baryon asymmetry Int. J. Mod. Phys. A15 (2000) M. Fukugita & T. Yanagida: M. Fukugita & T. Yanagida: Baryogenesis without Grand Baryogenesis without Grand Unification Unification Phys. Lett. B 174 (1986) 45 Phys. Lett. B 174 (1986) 45 Leptogenesis by Out-of-Equilibrium Decay Equilibrium abundance of heavy Majorana neutrinos Real abundance determined by decay rate Createdlepton-numberabundance Equilibrium abundance of heavy Majorana neutrinos Real abundance determined by decay rate CP-violating decays by CP-violating decays by interference of tree-level interference of tree-level with one-loop diagram with one-loop diagram

39 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Leptogenesis by Majorana Neutrino Decays In see-saw models for neutrino masses, out-of-equilibrium In see-saw models for neutrino masses, out-of-equilibrium decays of right-handed heavy Majorana neutrinos provide decays of right-handed heavy Majorana neutrinos provide source for CP- and L-violation source for CP- and L-violation Cosmological evolution B = L = 0 early on B = L = 0 early on Thermal freeze-out of heavy Majorana neutrinos Thermal freeze-out of heavy Majorana neutrinos Out-of-equilibrium CP-violating decay creates net L Out-of-equilibrium CP-violating decay creates net L Shift L excess into B by sphaleron effects Shift L excess into B by sphaleron effects Sufficient deviation from equilibrium distribution of heavy Majorana neutrinos at freeze-out Limits on Yukawacouplings masses of ordinaryneutrinos Requires Majorana neutrino masses below 0.1 eV Buchmüller, Di Bari & Plümacher, hep-ph/ & hep-ph/

40 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-CityTitle Dark Energy 73% (Cosmological Constant) Neutrinos Neutrinos 0.1 2% 0.1 2% Dark Matter 23% Ordinary Matter 4% (of this only about 10% luminous) 10% luminous)

41 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Geheimnis der dunklen Materie 4. Candidates and Searches for Particle Dark Matter 4. Candidates and Searches for Particle Dark Matter Georg Raffelt, Max-Planck-Institut für Physik, München Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico

42 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-CityLee-Weinberg-Curve Weakly interacting Weakly interacting massive particles massive particles (WIMPs) possible as (WIMPs) possible as cold dark matter cold dark matter For m 1 MeV For m 1 MeV neutrinos freeze out neutrinos freeze out nonrelativistically nonrelativistically Density suppressed Density suppressed by annihilation by annihilation before freeze-out before freeze-out

43 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Survival of the Weakest Boltzmann suppression of equilibrium density n exp( m/T) Number density freezes out when annihilation rate is slower than cosmic expansion rate Gondoloastro-ph/

44 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Electroweak Scale Favored ? Boltzmann collision equation for number density n of particles with annihilation cross section A Resulting cosmic mass density Concordance dark matter density Mass for Weakly Interacting Massive Particle (WIMP) as dark matter With electroweak cross section (Majorana neutrino) Cosmic dark matter density of thermal relics Cosmic dark matter density of thermal relics and approximate electroweak gauge coupling strength and approximate electroweak gauge coupling strength favor electroweak scale for scale of new physics favor electroweak scale for scale of new physics

45 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Supersymmetric Extension of Particle Physics In supersymmetric extensions of the particle-physics standard model, In supersymmetric extensions of the particle-physics standard model, every boson has a fermionic partner and vice versa every boson has a fermionic partner and vice versa Sleptons (e, e, …) Squarks (u, d, …) SpinSuperpartner 0 1/2GluinosWinoZino Photino ( ) 1/2 3/2 Higgsino Gravitino ~ ~~ ~ ~ If R-Parity is conserved, the lightest SUSY-particle (LSP) is stable If R-Parity is conserved, the lightest SUSY-particle (LSP) is stable Most plausible candidate for dark matter is the neutralino, Most plausible candidate for dark matter is the neutralino, similar to a massive Majorana neutrino similar to a massive Majorana neutrino Neutralino = C 1 Photino + C 2 Zino + C 3 Higgsino 1/2 Leptons (e, e, …) Quarks (u, d, …) 1Gluons W Z 0 Photon ( ) 0 2 Higgs Graviton Spin Standard particle

46 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Inventors of Super-Symmetry Julius Wess ( ) Director emeritus MPI Physics Bruno Zumino (born 1923)

47 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City SUSY Particles Natural as Dark Matter ? Gondolo, astro-ph/

48 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Dark SUSY

49 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Killing Two Birds with One Stone A good particle dark matter candidate is motivated by solving an issue in particle physics Supersymmetry Solves hierarchy problem Solves hierarchy problem Can provide dark matter Can provide dark matter

50 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City The Search for Dark Matter in our Galaxy (With permission of David Simmonds ©)

51 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Search for Neutralino Dark Matter Direct Method (Laboratory Experiments) Crystal Energydeposition Recoil energy (few keV) is measured by Ionisation Ionisation Scintillation Scintillation Cryogenic Cryogenic Galactic dark matter particle(e.g.neutralino)

52 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City WIMP Searches COUPPPICASSO XENON LUX, ZEPLIN WARP, ArDM DEAP/CLEANDAMA/LIBRA KIMS, XMASS DRIFTGERDA CDMSEDELWEISSCRESSTROSEBUD HeatPhonons ChargeLight

53 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Underground Physics Gran Sasso Laboratory (Italy) Background suppression most crucial requirement for WIMP searches. Underground Labs: Shield cosmic rays

54 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City CRESST Experiment to Search for Dark Matter

55 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City The DAMA/LIBRA Experiment in the Gran Sasso 5 x 5 crystals à 9.7 kg 10.2 × 10.2 × 25.4 cm 3 PMT + HV divider ~ 1 event/keV/kg/d WIMP contribution at low energies? Data since Sep ton x years

56 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City DAMA/LIBRA Evidence for WIMP Detection DAMA/LIBRA experiment in Gran Sasso (NaI scintillation DAMA/LIBRA experiment in Gran Sasso (NaI scintillation detector) observes an annual modulation at a detector) observes an annual modulation at a 8.2 statistical CL, based on 0.82 ton-years of data 8.2 statistical CL, based on 0.82 ton-years of data [Riv. N. Cim. 26 (2003) 1 73, arXiv: (2008)] [Riv. N. Cim. 26 (2003) 1 73, arXiv: (2008)] Detector stability ? Background stability ?

57 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Limits and Forecasts for Direct WIMP Searches

58 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Search for Neutralino Dark Matter Direct Method (Laboratory Experiments) Crystal Energydeposition Recoil energy (few keV) is measured by Ionisation Ionisation Scintillation Scintillation Cryogenic Cryogenic Galactic dark matter particle(e.g.neutralino) Indirect Method (Neutrino Telescopes) Sun Sun Galactic dark matterparticles are accreted AnnihilationHigh-energyneutrinos(GeV-TeV) can be measured

59 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City IceCube Neutrino Telescope at the South Pole 1 km 3 antarctic ice, instrumented 1 km 3 antarctic ice, instrumented with 4800 photomultipliers with 4800 photomultipliers 40 of 80 strings installed (2008) 40 of 80 strings installed (2008) Completion until 2011 foreseen Completion until 2011 foreseen

60 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City ANTARES Neutrino Telescope in the Mediterranean

61 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Luminous Creatures of the Deep Ocean

62 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Sensitivity of IceCube to SUSY Dark Matter With Deep Core addition J. Edsjö, 2007 Ratescomputedwith

63 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Can We See the Dark Matter? HESS airshower telescope, Namibia MAGIC, La Palma GLAST Satellite Launch 11 June 08 Dark matter particles can directly annihilate The dark halo of our galaxy can slightly glow in high-energy gamma rays

64 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Substructure in Dark Matter Halos Millenium Simulation On small scales, dark matter in numerical simulations is found to be very clumpy Facilitates dark matter Facilitates dark matter annihilation annihilation (boost factor for rays (boost factor for rays 2 15 from subhalos) 2 15 from subhalos) Where are the dwarf galaxies Where are the dwarf galaxies in our Milky Way? in our Milky Way? Problem for standard Problem for standard cold dark matter scenario? cold dark matter scenario?

65 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City High-Energy Gamma Rays from Neutralino Annihilation Stoehr et al., astro-ph/ Bergstöm, Ullio & Buckley, astro-ph/

66 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City GLAST Sensitivity after 1 Year GLAST working group on Dark Matter and GLAST working group on Dark Matter and New Physics, E. Baltz & al., JCAP, 2008 New Physics, E. Baltz & al., JCAP, 2008 Conservative approach: Galactic center Galactic center NFW halo profile assumed NFW halo profile assumed No substructure No substructure Vast region of opportunity for next generation of gamma-ray instruments Estimate including all halo with substructure (L. Bergström)

67 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Search for SUSY with the Large Hadron Collider (LHC) LHC at CERN (Geneva) Operation beginning 2008 Protons will collide with the Protons will collide with the largest energies ever in the lab largest energies ever in the lab (but larger ones in cosmic rays) (but larger ones in cosmic rays) Discovery of new particles Discovery of new particles expected, such as Higgs particles expected, such as Higgs particles or supersymmetric partners to or supersymmetric partners to ordinary matter ordinary matter

68 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Simulation or a Proton-Proton Collision at the LHC LHC at CERN (Geneva) Operation beginning 2008

69 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Hunting WIMPs Search for new particles at accelerators, Search for new particles at accelerators, notably the Large Hadron Collider (LHC) notably the Large Hadron Collider (LHC) at CERN (> 2008) at CERN (> 2008) Search for WIMP annihilation products in the form of Gamma rays (e.g. EGRET, HESS, MAGIC, GLAST) Gamma rays (e.g. EGRET, HESS, MAGIC, GLAST) Anti-protons (AMS, Pamela) Anti-protons (AMS, Pamela) Positrons (AMS, Pamela) Positrons (AMS, Pamela) High-energy neutrinos from the Sun or Earth High-energy neutrinos from the Sun or Earth (e.g. Super-K, Amanda/IceCube, Antares, …) (e.g. Super-K, Amanda/IceCube, Antares, …) Recoil energy (few keV) is measured by Ionisation Ionisation Scintillation Scintillation Cryogenically Cryogenically

70 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Axion Physics in a Nut Shell Cosmology CosmicString In spite of small mass, axions In spite of small mass, axions are born non-relativistically are born non-relativistically (non-thermal relics) (non-thermal relics) Cold dark matter Cold dark matter candidate candidate m a ~ eV m a ~ eV Search for Axion Dark Matter S N a B ext Microwave resonator Microwave resonator (1 GHz = 4 eV) (1 GHz = 4 eV) Primakoff Primakoff conversion conversion Particle-Physics Motivation CP conservation in QCD by CP conservation in QCD by Peccei-Quinn mechanism Peccei-Quinn mechanism For f a f axions are invisible For f a f axions are invisible and very light and very light Axions a ~ 0 Axions a ~ 0 m f m a f a m f m a f a a Solar and Stellar Axions Axions thermally produced in stars, Axions thermally produced in stars, e.g. by Primakoff production e.g. by Primakoff production Limits from avoiding excessive Limits from avoiding excessive energy drain energy drain Search for solar axions (CAST, Sumico) Search for solar axions (CAST, Sumico) a

71 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City The Cleansing Axion I named them after a laundry detergent, since they clean up detergent, since they clean up a problem with an axial current. a problem with an axial current. (Nobel lecture 2004, written version) Frank Wilczek

72 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Axions as Pseudo Nambu-Goldstone Bosons The realization of the Peccei-Quinn mechanism involves a new chiral The realization of the Peccei-Quinn mechanism involves a new chiral U(1) symmetry, spontaneously broken at a scale f a U(1) symmetry, spontaneously broken at a scale f a Axions are the corresponding Nambu-Goldstone mode Axions are the corresponding Nambu-Goldstone mode E f a U PQ (1) spontaneously broken U PQ (1) spontaneously broken Higgs field settles in Higgs field settles in Mexican hat Mexican hat a V(a) E QCD f a U PQ (1) explicitly broken U PQ (1) explicitly broken by instanton effects by instanton effects Mexican hat tilts Mexican hat tilts Axions acquire a mass Axions acquire a mass a V(a) =0 =0 _

73 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Lee-Weinberg Curve for Neutrinos and Axions log( a ) log(m a ) M 10 eV 10 eV 10 eV CDM HDM Axions Thermal Relics Non-ThermalRelics log( ) log(m ) M 10 eV CDMHDM 10 GeV Neutrinos & WIMPs Thermal Relics

74 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Search for Galactic Axions (Cold Dark Matter) Power Frequency mamamama Axion Signal Thermal noise of cavity & detector Power of galactic axion signal Microwave Energies Microwave Energies (1 GHz 4 eV) (1 GHz 4 eV) DM axions DM axions Velocities in galaxy Velocities in galaxy Energies therefore Energies therefore m a = eV v a 10 3 c E a ( ) m a Axion Haloscope (Sikivie 1983) B ext 8 Tesla MicrowaveResonator Q 10 5 Primakoff Conversion a B ext Cavityovercomesmomentummismatch

75 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City ADMX (G.Carosi, Fermilab, May 2007)

76 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Directsearch Too much cold dark matter TelescopeExperiments Globular clusters (a- -coupling) Too many events Too much energy loss SN 1987A (a-N-coupling) Axion Bounds [GeV] f a [GeV] f aeVkeVmeV eV eV mamamama Too much hot dark matter CASTADMX

77 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Some Dark Matter Candidates Supersymmetric particles Neutralinos Neutralinos Axinos Axinos Gravitinos Gravitinos Gauge hierarchy problem Little Higgs models Kaluza-Klein excitations Large extra dimensions Axions CP Problem of strong interactions Sterile neutrinos Right-handes states should exist Wimpzillas (superheavy particles) Super GZK cosmic rays MeV-mass dark matter Explain cosmic-ray positrons Mirror matter Exact parity symmetry Primordial black holes Q-balls Why not ?

78 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Hubble Deep Field


Descargar ppt "Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Escuela Avanzada de Verano, 7-11 July 2008, Cinvestav, Mexico-City Geheimnis der dunklen."

Presentaciones similares


Anuncios Google