La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Análisis Económico y Ambiental Dr. Oscar Alfredo Jaramillo Salgado Centro de Investigación en Energía. Universidad Nacional Autónoma de México

Presentaciones similares


Presentación del tema: "Análisis Económico y Ambiental Dr. Oscar Alfredo Jaramillo Salgado Centro de Investigación en Energía. Universidad Nacional Autónoma de México"— Transcripción de la presentación:

1 Análisis Económico y Ambiental Dr. Oscar Alfredo Jaramillo Salgado Centro de Investigación en Energía. Universidad Nacional Autónoma de México ojs@cie.unam.mx ojs@cie.unam.mx 1 de Dic. 2011

2 Source: World Energy Council Sólo por ofrecer un orden de magnitud Primary Energy:  The energy content of the annual solar radiation which reaches the earth and its atmosphere is 2,895,000 EJ,  The total non-renewable energy resources of 325,300 EJ (oil, 8,690 EJ (20 times); gas, 17,280 EJ (40 times); uranium, 114000 EJ (250 times); coal, 185 330 EJ (400 times)).  The energy content of other major renewables is estimated as 1960 EJ (4 times) (hydro, 90 EJ; wind, 630 EJ; photosynthetic storage/ biomass, 1 260 EJ),  Current world primary energy consumption is about 425 EJ/yr.  So the total amount of energy irradiated from the sun to the earth’s surface is enough to 2% of arid and semi-arid areas are enough to supply annual World demand of electricity Electricidad Solar Térmica: 2.Balance global de energía

3 Clatrato de metano en plena combustión. Oil Shale. Esquistos bituminosos

4 40 N 35 S El 70% de la población del planeta vive dentro de la denominada “Franja Solar”.

5 Illustration of the distribution of energy use on the planet. (Courtesy of C. Mayhew and R. Simmon and NASA/GSFC archive.)

6 Primary Energy:  The energy content of the annual solar radiationwhich reaches the earth and its atmosphere is 2,895,000 EJ,  The total non-renewable energy resources of 325,300 EJ (oil, 8,690 EJ (20 times); gas, 17,280 EJ (40 times); uranium, 114000 EJ (250 times); coal, 185 330 EJ (400 times)).  The energy content of other major renewables isestimated a 1960 EJ (4 times) (hydro, 90 EJ; wind, 630 EJ; photosynthetic storage/ biomass, 260 EJ),  Current world primary energy consumption is about 425  So the total amount of energy irradiated from the sun to the earth’s surface is enough to 2% of arid and semi-arid areas are enough to supply annual World demand of electricity Electricidad Solar Térmica:

7 3.Taza de utilización de la energía per cápita

8

9 4.Explosión demográfica

10 5.La función de penetración de mercado En 1846, Pierre Frankcois Verhulst propuso una formulación matemática plausible del crecimiento demográfico conocida ahora como la ecuación de Verhulst. Esta ecuación es un punto de partida excelente para entender el problema de la substitución tecnológica, es decir, la cuestión de cómo una tecnología más avanzada substituirá a una tecnología más vieja.

11

12

13

14 Como un ejercicio de propositico, Marchetti usa las líneas de tendencia de la Figura 1.8, obtenida sólo de los datos de 1935, y calcula el comportamiento de la cuota del mercado del petróleo empleando la formula:

15 Los resultados se muestran en la Figura 1.9. Son muy exactos y llevó a Marchetti a comentar: “podríamos predecir la cuota de mercado fraccionaria del petróleo en los E.E.U.U. hasta 1970 con una precisión de uno por ciento.”

16 Si extendemos el gráfico de Marchetti a 2008, encontramos un buen acuerdo del comportamiento del carbón y del gas, en las cuales se basa el pronóstico, pero el modelo no es muy bueno para los tiempos modernos (véase Figura 1.10)

17 Si durante el período de la penetración del mercado, existe un aumento substancial en capital disponible, éste alterará el índice de penetración, aunque puede no aumentar lo beneficioso de la empresa. Sería de gran valor si fuera posible estimar cuánto se aceleraría la penetración en función de una cantidad de inversión dada en el nuevo mercado. Desafortunadamente, esto no es todavía posible. La formulación antedicha implica que cuando una tecnología comienza a penetrar el mercado, el mercado debe ya estar bien desarrollado y su grado de madurez determinará el índice de penetración eventualmente. Así, “la magnitud de la inversión externa original determina realmente las condiciones iniciales para el modelo” (Peterka, 1977). Las reglas de la penetración de mercado discutidas en esta subsección proporcionan una herramienta de gran alcance para el planeamiento, pero se deben utilizar con mucha precaución y con mucha atención a las suposiciones implícitas.

18 6.La utilización de la energía

19

20

21

22 7.Emisiones de Carbón

23

24

25

26 9.Costo Nivelado de Producción de Electricidad

27

28

29 CSP cost reduction objective 0.00 0.16 0.04 0.08 GEF & Preferred Financing Green Pricing 0.18 Subsidized Introductory Markets Green Power Markets Initial Competetive Markets Sustained Global Markets 20052010201520202025Year 0.12 EURO/kWh Feed-in Tariffs Competitive Price Range for Grid- Connected Intermediate Load Power 10.Perspectivas de Mercado

30 Tres vías a la reducción de costos Escalamiento Volumen de producción Investigación y desarrollo EURO/kWh

31 Tecnología de los Helióstatos 450 €/m 2 250 €/m 2 140 €/m 2 19 80 19 85 20 00 CASA (39 m 2 ) Asinel (65 m 2 ) INABENSA (91 m 2 ) l El funcionamiento de la estructura de metal-vidrio es robusta y estable. Se han reducido los costos de fabricación hasta 140€/m 2.

32 Cost distribution and main figures of the 50 MWe parabolic trough reference plant using oil as HTF and 3h thermal storage investment breakdown investment solar field 51% investment power block, BOP 22% investment storage 8% investment land 2% contingencies 17% Results Specific investment costs3530€/kW el Capacity factor28.5% Fraction of the load demand satisfied by solar 50.0% Levelised electricity costs (solar- only) 0.172€/kWh el Included O&M cost / kWh0.032€/kWh el (~Andasol)

33 Impact of innovations on LEC for solar-only operation of a parabolic trough plant with HTF and 3h thermal storage (full load from 9a.m. – 11p.m.) Combination of selected measures: Multilayer plastics and innovative structures Dust repellent mirrors Tubeless concrete storage with advanced charging/discharging Increased maximum HTF temperature Reduced parasitics (~Andasol)

34 investment solar field 64% investment storage 0% investment power block, BOP 17% investment land 2% contingencies 17% Cost distribution and main figures of the 50 Mwe parabolic trough reference plant using water/steam as HTF and 3h thermal storage Results Specific investment costs2.840€/kW el Capacity factor21.7% Fraction of the load demand satisfied by solar 37.8% Levelised electricity costs (solar-only) 0.187 €/kWh e l Included O&M cost / kWh0.039 €/kWh e l (~DSG)

35 Impact of innovations on LEC for solar-only operation of a parabolic trough plant using water/steam as HTF and thermal storage (full load from 9a.m. – 11p.m.) Combination of selected measures: Front surface mirrors Dust repellent mirrors advanced concrete storage Increased field outlet temperature Reduced parasitics (~DSG)

36 Cumulative cost reduction of parabolic trough DSG Systems compared to parabolic trough with oil reference system

37 Cost distribution and main figures of the CRS reference plant with molten salt and 3h thermal storage Results Specific investment costs3 473€/kW el Capacity factor33.3% Fraction of the load demand satisfied by solar 29.2% Levelised electricity costs (solar-only) 0.154 €/kWh e l Included O&M cost / kWh0.036 €/kWh e l investment solar field 36% investment power block 24% investment receiver 15% investment tower 3% investment storage 3% investment land 2% indirect costs 17% (~Solar TRES)

38 Impact of innovations on LEC for solar-only operation of a CRS with molten salt and 3h thermal storage (full load from 9a.m. – 11p.m.) Combination of selected measures: Scale-up of the module size Large area heliostat Thermocline storage Dust repellent mirrors (~Solar TRES)

39 investment breakdown investment solar field 38% investment power block 20% investment receiver 14% investment tower 5% investment storage 4% investment land 2% indirect costs 17% Cost distribution and main figures of a 50 MWe CRS plant with saturated steam and 3h thermal storage Results Specific investment costs3 019€/kW el Capacity factor26.4% Fraction of the load demand satisfied by solar 44.6% Levelised electricity costs (solar-only) 0.168 €/kWh e l Included O&M cost / kWh0.04 €/kWh e l (~PS10)

40 Impact of innovations on LEC for solar-only operation of a 50 MWe CRS plant with saturated steam and 3h thermal storage (full load from 9a.m. – 11p.m.) Combination of selected measures: Dust repellent mirrors Large area heliostats Advanced storage Scale-up of the module size Change to superheated steam (~PS10)

41 Cost distribution and main figures of the 50 MWe CRS using Atmospheric Air and 3h thermal storage Results Specific investment costs3989€/kW el Capacity factor32.5% Fraction of the load demand satisfied by solar 57.1% Levelised electricity costs (solar-only) 0.179 €/kWh e l Included O&M cost / kWh0.033 €/kWh e l investment solar field 35% investment power block 15% investment receiver 13% investment tower 5% investment storage 13% investment land 2% indirect costs 17% (~Phoebus-TSA &SOLAIR)

42 Impact of innovations on LEC for solar-only operation of a 50 MWe CRS using Atmospheric Air and 3h thermal storage (full load from 9a.m. – 11p.m.) Combination of selected measures: Dust repellent mirrors Large area heliostats Storage with mobile solid material Scale-up of the module size Improved receiver performance (~Phoebus-TSA &SOLAIR)

43 Cost distribution and main figures of the 50 MWe CRS using pressurized air hybrid turbine Results Specific investment costs1622€/kW el Capacity factor55% Fraction of the load demand satisfied by solar 19% Levelised electricity costs (solar-only) 0.082 €/kWh e l fuel costs included in fossil LEC0.030 €/kWh e l investment tower 8% investment storage 0% investment land 3% investment solar field 22% investment power block 39% indirect costs 17% investment receiver 11% (~ REFOS/SOLGATE/SOLHYCO )

44 Impact of innovations on CRS using pressurized air in combination with a solar hybrid gas-turbine (3-h storage, full load from 9 a.m. to 11 p.m.). Combination of selected measures: Large area heliostats Dust repellent mirrors Increased module size Thermal storage integration (~REFOS/SOLGATE/SOLHYCO)

45 Cost distribution and main figures of the 50 MWe dish-Stirling farm Results Specific investment costs8035€/kW el Capacity factor49.6% Fraction of the load demand satisfied by solar 45% Levelised electricity costs (solar-only) 0.281 €/kWh e l fuel costs included in fossil LEC0.046 €/kWh e l Solar Receiver & Combustor Parabolic Dish Concentrator Concentrated Sunlight Stirling Engine & Generator investment solar field 38% investment power block 37% investment storage 0% investment land 1% indirect costs 17% investment receiver 7% (Dish-Stirling)

46 Impact of innovations on solar LEC for the dish/engine system (full load from 9 a.m. to 11 p.m.). No storage (Dish-Stirling)

47 0% 10% 20% 30% 40% 50% Trough with HTF Trough DSG CRS molten salt CRS saturated steam CRS atmospheric air CRS pressurized air / solar Dish engine relative cost reduction optimistic cost reduction estimation pessimistic cost reduction estimation Summary of relative cost reduction for 7 CSP Innovation driven cost reduction potential for the 7 CSP technologies investigated in this study based on the LEC for the 50 MWe reference system and assuming a combination of selected innovations for each system.

48

49

50 CENTRO DE INVESTIGACIÓN EN ENERGÍA www.cie.unam.mx Nuestro Compromiso, Nuestros Hijos Las acciones que tomemos o dejemos de hacer, a partir de ahora, determinarán nuestra capacidad para satisfacer los requerimientos energéticos en los próximos años.


Descargar ppt "Análisis Económico y Ambiental Dr. Oscar Alfredo Jaramillo Salgado Centro de Investigación en Energía. Universidad Nacional Autónoma de México"

Presentaciones similares


Anuncios Google