La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Realzado en el dominio de la frecuencia

Presentaciones similares


Presentación del tema: "Realzado en el dominio de la frecuencia"— Transcripción de la presentación:

1 Realzado en el dominio de la frecuencia
Filtros de Alisamiento Filtros de Realce imagen/TRIM92002

2 Idea Las ideas de emborronado por reducción de las altas frecuencias o realzado de los detalles incrementando la magnitud de las altas frecuencias frente a las bajas frecuencias, son conceptos directamente ligados a la transformada de Fourier. imagen/TRIM92002

3 La idea de un filtro lineal es considerablemente más intuitiva en el dominio de las frecuencias.
En la práctica, pequeñas máscaras espaciales se emplean más que la transformada de Fourier, debido a su simplicidad de implementación y su velocidad de operación. Sin embargo, el entender los conceptos en el dominio de la frecuencia es esencial para la solución de muchos problemas que no son fácilmente enmarcables en las técnicas espaciales. imagen/TRIM92002

4 Tipos de filtros frecuenciales
Filtrado Pasabaja Filtro de Butterworth Filtrado PasaAlta imagen/TRIM92002

5 Filtro Pasabaja Los bordes o fronteras y otros detalles de realce, (como el ruido) en los niveles de gris de la imagen, contribuyen significativamente al contenido de las frecuencias altas en el dominio de Fourier, por tanto, el emborronamiento (alisamiento) se alcanza en el dominio de Fourier atenuando un rango específico de componentes de altas frecuencias en la transformada de Fourier de una imagen dada: G(u.v)=H(u,v)F(u,v) imagen/TRIM92002

6 Filtro ideal Pasabaja imagen/TRIM92002

7 Los círculos superpuestos en el espectro, tienen radios de 8,18,43 y 152, estos círculos engloban en % de potencia luminosa de 90,93,95,99 y 99.5 % respectivamente. El espectro decrece rápidamente, con el 90% de la potencia está comprendida en un pequeño círculo de radio 8. imagen/TRIM92002

8 Imagen que muestra el emborronamiento en base a los radios de frecuencia de la imagen anterior
imagen/TRIM92002

9 Filtro de Butterworth La función de transferencia del filtro de Butterworth de orden n y frecuencia de corte a distancia D0 tiene la forma: donde D(u,v)=(u2+v2)1/2 imagen/TRIM92002

10 Filtro de Butterworth imagen/TRIM92002

11 En la siguiente figura se muestra la aplicación del filtro de Butterworth a la imagen de la avispa con un factor n=1 y D0 igual a los cinco radios antes ya mencionados. Se ve una transición más suave en emborronamiento conforme se quita potencia del espectro. Además no se aprecia ringing o temblor en ninguna de las imágenes a las que se aplicado el filtro de Butterworth. imagen/TRIM92002

12 Hasta ahora hemos empleado imágenes de buena calidad para aplicar los filtros pasabaja, en la imagen de las caras se muestra dos aplicaciones prácticas para suavizado de imágenes. La imagen del apartado a) muestra una imagen digitalizada con sólo 16 niveles de gris y por tanto ofrece un alto grado de falsos contornos. En la imagen b) se le aplica un filtro pasabaja de Butterworth de orden 1. En la imagen d) se ve el efecto de aplicar un filtro de Butterworth PasaBaja a la imagen ruidosa de la imagen c). imagen/TRIM92002

13 Imágenes sin calidad imagen/TRIM92002

14 Filtrado PasaAlta Una imagen, como mencionábamos anteriormente, puede ser emborronada atenuando los componentes de alta frecuencia de su Transformada de Fourier. Debido a que los bordes y otros cambios abruptos en los niveles de gris se asocian con frecuencias altas, el realce de imágenes puede alcanzarse mediante el filtrado de PasoAlto, que atenúa las frecuencias bajas sin distorsionar la información en las altas frecuencias del dominio de Fourier. imagen/TRIM92002

15 Filtro ideal PasaAlta imagen/TRIM92002

16 El filtro de Butterwoth
La función de transferencia de Butterworth de orden n y con frecuencia de corte D0 desde el origen se define con la relación: imagen/TRIM92002

17 En la siguiente figura se muestra la aplicación de este filtro a una imagen de rayos X de poca calidad, en la figura b) se le aplica un filtrado PasaAlta de Butterworth de orden 1, sólo aparecen los bordes de la imagen al atenuar las frecuencias más bajas. A menudo se emplea un técnica, que es añadir una constante para preservar los componentes de baja frecuencia, está adición amplifica, por supuesto, también los componentes de alta frecuencia. A esta técnica se la denomina de énfasis en las altas frecuencias, equivalente al estudiado en la parte de máscaras (figura c). La técnica anterior tiende a emborronar el resultado, para aliviar esta situación se acaba realizando una ecualización del histograma, mostrando el resultado en la figura d). imagen/TRIM92002

18 Filtro de Butter-Woth imagen/TRIM92002

19 El filtrado en frecuencia
Como ya comentamos, las imágenes se componen de detalles espaciales que se pueden observar como transiciones cíclicas de brillo de oscuro a claro y de claro a oscuro. El ratio en que ocurren estas transiciones es su frecuencia espacial. Las frecuencias espaciales se pueden orientar en horizontal, vertical o cualquier posición diagonal entre ambas. imagen/TRIM92002

20 Una transformación en frecuencia descompone una imagen desde su dominio espacial de brillos, en una función en el dominio de la frecuencia cuyos componentes tienen una magnitud y una fase. De forma similar una transformación inversa convierte una imagen de vuelta de su forma frecuencial a la espacial. imagen/TRIM92002

21 Existen numerosas transformaciones de la imagen de su forma espacial a la frecuencial, y cada una de ellas tiene su transformación inversa que la convierte a su forma espacial. La más común es la Transformada de Fourier. En el caso de las imágenes se emplea su versión discreta (DFT), mejorada con su versión “fast” (FFT). Existen otras, pero esta es la más genérica y empleada. imagen/TRIM92002

22 Conversión al dominio de la frecuencia
La Transformada de Fourier es un proceso en dos dimensiones. Primero, cada fila de píxeles se procesa, seguido por cada columna (recordemos que la imagen digitalizada no es más que una o más matrices). El resultado es un conjunto bidimensional de valores, cada uno de ellos tiene una magnitud y una fase. Cada valor representa un componente de frecuencia espacial distinto. Existe el mismo número de valores en la imagen transformada en frecuencia, como píxeles en la imagen original. imagen/TRIM92002

23 La porción que corresponde a la magnitud o intensidad se puede visualizar como imagen.
imagen/TRIM92002

24 La inversa emplea ambos valores (magnitud y fase) para llevar la imagen de vuelta a la forma espacial. Cuando se visualiza la magnitud de la imagen, aparece como simétrica al centro de la imagen. El centro es la frecuencia cero. Existen dos ejes que atraviesan la frecuencia cero, uno horizontal y el otro vertical. El eje horizontal define la frecuencia horizontal y el eje vertical la frecuencia vertical. La frecuencia más alejada del centro corresponde al ratio de Nyquist, que es la mitad de la frecuencia de muestreo (para evitar el aliasing). imagen/TRIM92002

25 La magnitud de cada frecuencia se indica por el brillo del pixel en cada localización de la imagen. Las frecuencias negativas en la imagen en frecuencia, aparecen como ejes simétricos del cuadrante de frecuencia positiva. imagen/TRIM92002

26 imagen/TRIM92002

27 imagen/TRIM92002

28 imagen/TRIM92002

29 Filtrado en el dominio espacial
Así como se aplicaban máscaras para crear filtros pasa-alta, pasa-baja y derivativos para buscar bordes, en el mundo de las frecuencias se pueden realizar idénticos filtros. De hecho en teoría son idénticos. El proceso en frecuencia es el siguiente: imagen/TRIM92002

30 imagen/TRIM92002

31 Aplicaciones, en el caso de una imagen corrompida con ruido periódico, como la que se muestra
imagen/TRIM92002

32 La imagen en frecuencia contiene puntos de luz representando la frecuencia espacial de las bandas de ruido. Podemos multiplicar por cero el área de la frecuencia de interés. Al hacer la transformada inversa la imagen ya no contiene este ruido repetitivo. Por supuesto, cualquier detalle legítimo de la imagen que tuviera la misma frecuencia desaparecerá creando posiblemente una degradación visible. Del mismo modo se puede multiplicar por cero las zonas de alta o baja frecuencia creando filtros pasa-baja y pasa-alta respectivamente. imagen/TRIM92002

33 imagen/TRIM92002

34 imagen/TRIM92002


Descargar ppt "Realzado en el dominio de la frecuencia"

Presentaciones similares


Anuncios Google