La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

La Química Computacional y el Diseño de Fármacos.

Presentaciones similares


Presentación del tema: "La Química Computacional y el Diseño de Fármacos."— Transcripción de la presentación:

1 La Química Computacional y el Diseño de Fármacos

2 Perspectiva Principios del descubrimiento de fármacos Descubrimiento de fármacos guiado por computadora Descubrimiento de fármacos guiado por datos Técnicas modernas para la identificación y selección de la diana Técnicas modernas de identificación de pistas

3 ¿Que es un fármaco? Se entiende por fármaco, cualquier sustancia biológicamente activa, capaz de modificar el metabolismo de las células sobre las que hace efecto Composición definida con un efecto farmacológico ¿Cuál es el proceso del Desarrollo y Descubrimiento de Fármacos?

4

5

6 Una pequeña historia del diseño de fármacos ayudados por computadora 1960s – Interacción del fármaco – revisión del objetivo 1980s- Automatización – cribado de alto rendimiento 1980s- Bases de datos (tecnología de la información) bibliotecas combinatorias 1980s- Computadoras Rápidas - acoplamiento 1990s- Computadoras Super Rápidas - ensamblado del genoma – selección de objetivos basados en el genoma 2000s- Manejo de una enorme información – fármacogenomica

7 Molécula Diana Línea de células recombinantes Expresión genética - Fermentación Purificación de la Proteína Cristalización Rayos-X - Sincrotón Estructura 3D

8 Diseño Racional Mapeo de Epítopes Ingeniería de Proteínas NBE Biblioteca de Moléculas Pequeñas NCE NCE (New Chemical Entity)NBE (New Biological Entity)

9

10 Fármacos: Proceso de Descubrimiento Moléculas Pequeñas –Productos Naturales Caldos de fermentación Extractos de Plantas Fluidos Animales (e.g., veneno de víbora) –Productos Químicos Medicinales Sintéticos Derivados para la Química Medicinal Derivados de la Química Combinatoria Biológicos –Productos Naturales (aislamiento) –Productos Recombinantes –Productos Quiméricos

11 Descubrimiento vs. Desarrollo El Descubrimiento incluye: su concepto, su mecanismo, ensayo, cribado, identificación de la pista, demostración de la pista, optimización de la pista El Descubrimiento también incluye pruebas in vivo en animales y demostración concomitante del índice terapéutico El Desarrollo comienza cuando se toma la decisión de poner a una molécula en la fase I de las pruebas clínicas

12 Descubrimiento vs. Desarrollo El tiempo desde su concepción hasta la aprobación de un nuevo fármaco es típicamente de años La vasta mayoría de las moléculas son desechadas en el camino El costo estimado de llevar al mercado un fármaco es aproximadamente $800 millones de dólares hoy en día!!

13 Descubrimiento vs. Desarrollo Identificar la enfermedad Aislar la proteína involucrada en la enfermedad (2-5 años) Encontrar un fármaco efectivo contra la proteína (2-5 años) Pruebas preclínicas (1-3 años) Formulación Pruebas clínicas en humanos (2-10 años) Escalamiento Aprobación de la FDA (2-3 años) File IND File NDA

14 La tecnología impacta este proceso Identificar la enfermedad Aislar la proteína Encontrar el fármaco Pruebas preclínicas GENOMICA, PROTEOMICA & BIOFARM. CRIBADO DE ALTO RENDIMIENTO MODELADO MOLECULAR CRIBADO VIRTUAL QUIMICA COMBINATORIA MODELOS ADME IN VITRO & IN SILICO Potencialmente produce muchas más dianas, personalizadas o no Cribado de hasta 100,000 compuestos por día para probar su actividad contra la proteína Usar una computadora para predecir la actividad Producir rápidamente un vasto número de compuestos Las graficas y modelos por computadora ayudan a mejorar la actividad Modelos computarizados y de tejidos comienzan a reemplazad las pruebas en animales

15 Genómica, Proteómica & Biofarmacéuticos Comprendiendo la liga entre enfermedades, el montaje genético y la expresión de las proteínas

16 Genómica La genómica está acelerando nuestra compresión de cómo están relacionados el ADN, los genes, las proteínas y su función, tanto en condiciones normales y de enfermedad El proyecto del Genoma Humano ha mapeado los genes del ADN en humanos Se espera que este conocimiento provea de muchas más proteínas potenciales Permite la posible personalización de las terapias ATACGGAT TATGCCTA funciones

17 Chips Genéticos Los chips genéticos nos permiten buscar por cambios en la expresión de una proteína en diferentes individuos en una variedad de condiciones, y ver si la presencia de fármacos cambia esa expresión Hace posible el diseño de fármacos para diferentes fenotipos Compuestos administrados gente / condiciones e.g. obeso, cáncer, caucásico Perfil de expresión (cribado de 35,000 genes)

18 Microarreglos Genes impresos en vidrio Una variedad de genomas humanos y animales Medirán cuanto de cada fragmento de ADN está presente en una muestra desconocida Un chip de genoma humano contiene 14,500 genes humanos bien caracterizados $300-$500 por chip

19 Producción del GeneChip

20 Uso del GeneChip

21 Biofarmaceúticos Fármacos basados en proteínas, péptidos o productos naturales en lugar de moléculas pequeñas (química) Promovidos por las compañías biotecnológicas Los biofarmaceúticos se pueden descubrir más rápidamente que las terapias normales de moléculas pequeñas Las biotecnológicas se están empatando con las compañías farmacéuticas más importantes

22 Cribado de alto rendimiento El cribado de compuestos en ambiente corporativo quizá sea de millones para ver si alguno muestra actividad contra la proteína causante de la enfermedad

23 Cribado de alto rendimiento Las compañías farmacéuticas tienen ahora millones de nuestras de compuestos químicos El cribado de alto rendimiento puede probar 100,000 compuestos por día Puede ser que solo algunos miles de estos compuestos lleguen a mostrar alguna actividad contra la proteína El químico medicinal necesita escoger inteligentemente las 2 o 3 clases de compuestos que muestren la promesa de ser fármacos que puedan seguir desarrollándose

24 Implicaciones Informáticas Tener la capacidad de almacenar la estructura química y los datos biológicos para millones de puntos –Representación computacional de la estructura 2D Tener la capacidad de organizar miles de compuestos activos en grupos de relevancia –Agrupar estructuras similares y relacionarlas a la actividad Capacidad de aprender tanta información como sea posible a partir de los datos (minería de datos) –Aplicar métodos estadísticos a las estructuras y correlacionar la información

25 Herramientas para la minería de datos

26 Cribado Virtual Construir un modelo computacional de la actividad para una diana en particular Usar un modelo para valorar los compuestos de bibliotecas virtuales o reales Usar esta valoración para decidir cual hacer, o pasar a través de un cribado real

27 Modelos computacionales de la actividad Métodos de Aprendizaje –E.g. Redes Neuronales, Redes de Bayes, Redes de Kahonen –Se entrenan con compuestos de actividad conocida –Predicen la actividad de compuestos desconocidos Métodos de Valoración –Compuestos con perfil basado en propiedades relativas a la diana Acoplamiento Rápido –Rápidamente acoplar representaciones 3D de moléculas en representaciones 3D de proteínas, y valorar de acuerdo en que tan bien se acoplan

28 Química Combinatoria Al combinar bloques de construcción molecular, podemos crear un gran número de moléculas diferentes muy rápidamente Usualmente involucra a una molécula plataforma, y grupos de compuestos que han reaccionado con la plataforma para colocar diferentes estructuras en puntos de unión

29 Ejemplo de Biblioteca Combinatoria NH R1 R2 R3 Plataformagrupos-R R1 = OH OCH 3 NH 2 Cl COOH R2 = fenilo OH NH 2 Br F CN R3 = CF 3 NO 2 OCH 3 OH fenoxy Ejemplos NH OH CF 3 OH NH OH O CH 3 NH C OH O CF 3 NH C OH O O Para esta pequeña biblioteca el número de posibles compuestos es de 5 x 6 x 5 = 150

30 Puntos de Química Combinatoria Cuales grupos-R escoger Cuales bibliotecas hacer –¿Llenar la colección existente de compuestos? –¿Orientadas a un proteína en particular? –¿Tantos compuestos como se posible? El perfil computacional de las bibliotecas puede ayudar –Bibliotecas virtuales pueden ser evaluadas en la computadora

31 Búsqueda de Estructuras 2D búsquedas de subestructuras 3D búsquedas de subestructuras 3D búsquedas conformacionalmente flexibles

32 2D Búsqueda de Subestructuras Grupos funcionales conectividad –Aromático substituido con halógenos y un grupo carboxilo

33 2D Búsqueda de Subestructuras Buscar: –Aromático substituido con halógenos y un grupo carboxilo

34 2D Búsqueda de Subestructuras

35 2D Búsqueda de Similitud

36 3D Búsqueda de Subestructuras Relaciones espaciales Define intervalos para distancias y ángulos Conformación almacenada –generalmente la de más baja energía

37 3D Búsqueda de Subestructuras

38 Búsquedas Conformaciónalmente Flexibles Rotar alrededor de uniones que giran libremente Muchas conformaciones Multa por baja energía Obtener muchos más aciertos Los huéspedes se adaptan al anfitrión y el anfitrión se adapta a los huéspedes

39 Búsquedas Conformaciónalmente Flexibles l Pequeña multa energética

40 Modelos ADME in vitro & in silico Tradicionalmente, animales son usados para las pruebas pre-humanas. Sin embargo, esta pruebas resultan caras, consumen tiempo y son éticamente indeseables Las técnicas ADME (Absorbtion, Distribution, Metabolism, Excretion) pueden ayudar a modelar como el fármaco interactuará con el cuerpo Estos métodos pueden ser experimentales (in vitro) usando cultivo de tejidos, o in silico, usando modelos computacionales

41 Modelos ADME in silico Los métodos computacionales pueden predecir propiedades importantes del compuesto para ADME, e.g. –LogP, una medida de lipofilicidad –Solubilidad –Permeabilidad –Metabolismo del Citocromo p450 Estimados promedio se pueden hacer para millones de compuestos, reduciendo el desgaste – el coeficiente de fallas de los compuestos en la última fase

42 Calculo de propiedades en la Red

43 Dibujar una estructura …

44 Regreso de los resultados … LogP Área de Superficie Total Polar # de átomos Peso Mol. Regla-de-5 violaciones # uniones Rot. Potencial farmacológico (N/D)

45 Disciplinas en el Descubrimiento de Fármacos Medicina Fisiología/patología Farmacología Biología molecular/celular Automatización/robótica Química medicinal, analítica, y química combinatoria Química estructural y computacional Bioinformática

46

47 Bioinformática - una Revolución Experimento Biológico Datos Información Conocimiento Descubrimiento Coleccionar Caracterizar Comparar Modelar Inferir Secuencia Estructura Ensamblado Sub-celular Celular Organos Alto -orden Year 9005 Poder de Cómputo Tecnología de secuenciación Data Proyecto Genoma Humano Genoma E.Coli Genoma C.Elegans 1 Genoma Pequeño/Mes ESTs Genoma Levadura Gene Chips Estructura viral Ribosoma Modelo pasos metabólicos de E.coli Complejidad Tecnología Mapeo del Cerebro Circuitos Genéticos Modelo Neuronal Modelo Cardiaco Genoma Humano Completo # Gente/Sitio Red (C) Copyright Phil Bourne

48 Bibliotecas Combinatorias Miles de variaciones a partir de una plataforma fija Buenas bibliotecas abarcan áreas muy grandes del espacio conformacional y químico - diversidad molecular Diversidad en – interacciones estéricas, electrostáticas, e hidrofóbicas... Deseo de ser tan amplias como los compuestos del índice Merck de cribado azaroso El diseño de bibliotecas de diseño ayudadas por computadora aún está en su infancia

49 Modelado Molecular Visualización 3D de las interacciones entre los compuestos y las proteínas Acoplamiento computacional de los compuestos con las proteínas

50 Visualización 3D La cristalografía de rayos-X y la espectroscopia de RMN pueden revelar la estructura 3D de las proteínas y compuestos que se les unen. La visualización de estos complejos de proteínas y potenciales fármacos pueden ayudar a los científicos a comprender el mecanismo de acción del fármaco y para mejorar el diseño de un fármaco. La visualización usa modelos de bolas y palitos para los átomos y sus uniones, así como para desplegar sus superficies. La visualización Estereoscópica está disponible.

51 Software de Acoplamiento Disponible DOCK (Kuntz et al, 1982, Ewing & Kuntz 2001) AutoDock (Olson et al 1990, Morris et al 1998) ICM (Abagyan et al 1994) FlexX (Rarey et al 1996) Hammerhead (Welch et al 1996) GOLD (Jones et al 1997) MCDock (Liu & Wang 1999) SLIDE (Kuhn et al 2002) FRED (McGann et al 2002) Surflex (Jain 2003) GemDock (Yang & Chen 2004) Glide (Friesner et al 2004) Yucca (Choi 2005) …

52 Algoritmos de Acoplamiento Búsqueda Estocástica: –Algoritmo Genético, Monte Carlo recocido simulado –AutoDock, MCDock, ICM, GOLD, Glide Construcción Incremental : –Fragmentos rígidos con uniones rotables –Incremental : ángulos de torsión preferidos –DOCK, FlexX, SLIDE, Surflex Multiconformero: – Genera un conjunto de conformeros de baja-energía – Acoplamiento Rígido – FLOG, FRED, Yucca

53 Acoplamiento con un Algoritmo Genético Colocar a un compuesto en el área aproximada donde el acoplamiento ocurre El algoritmo genético codifica la orientación del compuesto y sus uniones de torsión Optimizar la unión con la proteína –Minimizar la energía –Puentes de hidrógeno –Interacciones hidrofóbicas Puede se empleado para el cribado virtual

54 Visualización de Demos en Acoplamiento Molecular Acoplamiento Proteína-Proteína Acoplamiento Proteína-Ligando

55 Moléculas en Movimiento /jmol/protein_intro/index.html Instalar JMOL (jmol.org), Java 4 WinXP, ActiveControlX y J2SE v5.0 runtime

56 Referencias Cohen N. Guidebook on Molecular Modeling in Drug Design, Academic Press (1996) Cramer C.J. Essentials of Computational Chemistry: Theories and Models, John Wiley & Sons (2002) Schlick T. (Ed) Molecular Modeling and Simulation, Springer Verlag (2002) Leach A.R. (Ed) Molecular Modeling: Principles and Applications, Prentice Hall (2001) van de Waterbeemd H., Testa B. (Eds) Computer-Assisted Lead Finding and Optimization: Current Tools for Medicinal Chemistry, John Wiley & Sons (1997)


Descargar ppt "La Química Computacional y el Diseño de Fármacos."

Presentaciones similares


Anuncios Google