Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porMaría Antonia Casado Carrasco Modificado hace 10 años
1
Inferencia Estadística: 6. Probabilidad Condicional
Ricardo Ñanculef Alegría Universidad Técnica Federico Santa María
2
Probabilidades Modelo Matemático para la Incertidumbre .
Noción Frecuentista Noción Teórica Noción Bayesiana
3
Noción Frecuentista Ejemplo: ¿Cuál es la “probabilidad” de que tardemos más de 30 minutos en la cola del almuerzo? si sabemos que son las 13:15 de la tarde. Tiempos de Espera Hora del día [0,15] [15,30] [30,45] 11-12 30 12-13 20 5 45 13-14 35 60 55 25
4
Probabilidad Condicional
Sean A, B dos sucesos tal que P(B) > 0. La probabilidad de A condicionada a la ocurrencia de B, denotada como P(A|B) : Notemos que la idea de frecuencias condicionales calza perfectamente en este modelo.
5
Probabilidad Condicional
Ω A B
6
Probabilidad Condicional
Centra el foco de atención en el hecho que se sabe que han ocurrido el evento B Estamos indicando que el espacio muestral de interés se ha “reducido” sólo a aquellos resultados que definen la ocurrencia del evento B Entonces, P(A | B) “mide” la probabilidad relativa de A con respecto al espacio reducido B
7
Probabilidad Condicional
Se respetan los axiomas básicos? i) P(A|B) ≥ 0 ii) P(Ω |B) = 1 iii) Sean A1, A2, … , An disjuntos Ai Aj = i j P( Ai | B) = P( Ai | B)
8
Probabilidad Condicional
Ejemplo: Si lanzamos dos dados (4 caras) ¿Cuál es la probabilidad de que el máximo de los resultados sea par dado que el mínimo de los resultados es 3?
9
Probabilidad Condicional
Ejemplo: En una encuesta se ha determinado que los fines de semana el 45% de la población lee la tercera, el 35% lee el mercurio y el 5% lee ambos diarios. ¿Cuál es la probabilidad de que un lector de la tercera lea el también el mercurio?
10
Probabilidad Condicional
Ejemplo: En una fábrica se ha recopilado la siguiente información (expresar como probabilidades): El 25% de las piezas con fallas superficiales son funcionalmente defectuosas. Se sabe que el 10% de las piezas manufacturadas tienen fallas visibles en la superficie. También se ha encontrado que el 5% de la piezas que no tienen fallas superficiales son funcionalmente defectuosas.
11
Probabilidad Condicional
El 5% de la piezas que no tienen fallas superficiales son funcionalmente defectuosas Se ha encontrado que el 25% de las piezas con fallas superficiales son funcionalmente defectuosas El 90% no tienen fallas visibles en la superficie. Se sabe que el 10% de las piezas manufacturadas tienen fallas visibles en la superficie. Evento A = { pieza funcionalmente defectuosa} B = { pieza tiene una falla visible en la superficie}
12
Probabilidad Condicional
P(A B ) P(B) P() P(B) Si A B = P(A | B) = = = 0
13
Probabilidad Condicional
Si A B = A P(A | B) = = P(A) P(A B ) P(B) P(A)
14
Probabilidad Condicional
Si A B = B P(A | B) = = = 1 P(A B ) P(B)
15
Probabilidad Condicional
Si A B P(A | B) = P(A B) P(B)
16
Probabilidad Marginal
Si estudiamos la relación entre una serie de eventos A,B,C, llamaremos “probabilidades marginales” a las probabilidades no condicionales P(A), P(B) y P(C).
17
Regla de Bayes Sean A, B dos sucesos tal que P(A), P(B) > 0.
La “Regla de Bayes” establece una relación entre las probabilidades condicionales P(A|B) y P(B|A) Se sigue inmediatamente de la definición de probabilidad condicional
18
Regla de Bayes Ejemplo. En un hospital se tienen registros de que el 90% de los pacientes obsesos presentan enfermedades coronarias. Si la proporción de pacientes obesos alcanza el 45% y las enfermedades coronarias tienen una incidencia del 55% en la población chilena, ¿cuál es la probabilidad de que un paciente que presenta enfermedades coronarias sea obeso?
19
Probabilidad Total Sean B1, B2,....,Bn eventos mutuamente excluyentes tal que su unión conforma el espacio muestral Entonces:
20
Bayes y Probabilidad Total
Ejemplo: En una fábrica se ha recopilado la siguiente información (expresar como probabilidades): El 25% de las piezas con fallas superficiales son funcionalmente defectuosas. Se sabe que el 10% de las piezas manufacturadas tienen fallas visibles en la superficie. También se ha encontrado que el 5% de la piezas que no tienen fallas superficiales son funcionalmente defectuosas. ¿Cuál es la probabilidad de que una pieza defectuosa tenga una falla superficial?
21
Bayes y Probabilidad Total
Ejemplo (tomado del Canavos, pág. 45)
22
Probabilidad Total B1 B2 B5 AB1 AB2 AB4 AB3 B4 B3
23
Probabilidad Total Ejemplo. Un producto se fabrica en 5 plantas que producen el 20%, 25%, 30%, 15% y 10% respectivamente. Las probabilidades de fallas en cada planta están dadas por: 0.2, 0.1, 0.15, 0.3, 0.0 ¿Cuál es la probabilidad de que un producto venga fallado?
24
Probabilidad Total Ejemplo. Supongamos de que se elige aleatoriamente un producto y se encuentra que está fallado. ¿Cuál es la probabilidad que sea manufacturado en Planta B3?
25
Independencia Dos eventos A y B se dicen independientes ssi:
Sean Ai: i I = 1,2,3,......,k una colección de eventos de (, , P). Se dice que los elementos sonconjuntamente independientes para todo subconjunto de índices J:
26
Independencia Ejemplo (tomado del Canavos, pág. 42)
27
Independencia Sea (, 2, P) modelo de probabilidad.
= (1,0,0) (0,1,0) (0,0,1) (1,1,1) P(wi) = 1/4 Sean A1, A2, A3 eventos de (, 2, P) : A1: 1era coord. es 1 A2: 2da coord. es 1 A3: 3era coord. es 1 Estudiar independencia conjunta y de a pares.
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.