La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Modos deslizantes de orden superior

Presentaciones similares


Presentación del tema: "Modos deslizantes de orden superior"— Transcripción de la presentación:

1 Modos deslizantes de orden superior
Análisis del chattering Alfonso Monroy Olascoaga Asesor: Dr. Leonid Fridman

2 Índice Introducción Modos deslizantes de orden superior Conclusiones
Antecedentes Motivación Modos deslizantes Chattering Modos deslizantes de orden superior Controlador twisting Controlador super twisting Definición Análisis de chattering Función descriptiva Conclusiones Trabajo abierto

3 Introducción

4 Antecedentes 1932, Kulebakin: control por relevadores de un generador de CD. 1934, Nikolski: relevadores para controlar el movimiento de un barco. Inician en Rusia, gracias a los trabajos de Emel’yanov y Barbashin, en los primeros años de la década de los 60s. Se conocieron fuera de Rusia gracias a Itkis (1976) y Utkin (1977). Los modos deslizantes pueden aparecer en cualquier tipo de sistema con discontinuidades en las ecuaciones de movimiento. Existen naturalmente (ej. fricción seca) y en aplicaciones (ej. convertidores de potencia).

5 Motivación Considérese el sistema
con |a(t)| < k1; k2 < b(t) < k3 desconocidas. El problema consiste en diseñar una ley de control u para estabilizar asintóticamente el origen en presencia de a(t) y b(t), que representan incertidumbres en el modelo y perturbaciones.

6 Motivación Para lograrlo se propone la superficie
y se busca que la trayectoria del estado quede confinada a la misma. A la superficie propuesta se le conoce como superficie de deslizamiento y a la trayectoria del estado en ella, como modo deslizante.

7 Motivación Lo anterior puede lograrse con un control discontinuo del tipo modo deslizante superficie de deslizamiento trayectorias

8 Motivación Modo deslizante ideal Convergencia a s = 0 en tiempo finito
Frecuencia de conmutación infinita

9 Modos deslizantes La entrada de control puede tomar sólo dos valores y genera discontinuidades sobre la línea s = 0. La trayectoria interseca la línea en tiempo finito y una vez que lo hace no puede salir de ella. El vector de estado decae exponencialmente según la solución de la ecuación diferencial. Debe notarse que la superficie deslizante no depende de los parámetros de la planta ni de la perturbación: insensibilidad a perturbaciones y variaciones paramétricas.

10 Chattering La desventaja más importante del control por modos deslizantes es el fenómeno conocido como chattering. Se presenta debido a que al modelar, no se consideran constantes de tiempo despreciadas en planta, sensores o actuadores. La conmutación en el control excita las dinámicas no modeladas y generan oscilaciones en el vector de estado a muy alta frecuencia. Afecta la precisión del control, genera pérdidas y puede provocar posibles daños a la planta.

11 Chattering Efecto producido por histéresis en los actuadores y u 1
-0.1 0.1 1 -1 u y

12 Chattering Efecto producido por retardo en los actuadores
retardo: 10 ms

13 Chattering Aproximación continua de la función signo -0.5 0.5 1 -1 u y

14 Resumen El control por modos deslizantes convencionales tiene las siguientes ventajas Reducción de orden Insensibilidad a variación paramétrica o perturbaciones Su principal desventaja es el chattering.

15 Modos deslizantes de orden superior

16 |a(t)| < k1; k2 < b(t) < k3, |a’|<k4, |b’|<k5
Controlador twisting Para el sistema con |a(t)| < k1; k2 < b(t) < k3, |a’|<k4, |b’|<k5 un controlador que elimina el chattering está dado por

17 Controlador twisting Modo deslizante de orden 2 descrito por

18 Controlador super-twisting
Para el sistema con considérese el control

19 Controlador super-twisting
Modo deslizante de orden 2 descrito por

20 Definición Los modos deslizantes de orden superior es una generalización del concepto de modo deslizante convencional. El orden del modo deslizante es el número de derivadas continuas de s en la vecindad del modo deslizante. Un modo deslizante de orden r está determinado por las ecuaciones

21 Análisis del chattering
Función descriptiva Se utiliza el método de la función descriptiva para determinar si el sistema en lazo cerrado presenta oscilaciones periódicas. Otros métodos: perturbaciones singulares, ecuación promedio.

22 Función descriptiva Controlador twisting (función descriptiva)
Si la planta tiene un grado relativo mayor a dos, pueden presentarse oscilaciones periódicas.

23 Función descriptiva Controlador super-twisting (función descriptiva)
Si la planta tiene un grado relativo mayor a uno, pueden presentarse oscilaciones periódicas.

24 Conclusiones Se presentó una visión general del concepto y características más importantes del control por modos deslizantes convencional. La insensibilidad a perturbaciones y variación paramétrica es su principal ventaja. El chattering es la desventaja más importante de los modos deslizantes de primer orden. Al generalizar el concepto de modo deslizante se obtienen los modos deslizantes de orden superior. Se presentaron dos controladores por modos deslizantes de segundo orden. Éstos garantizan convergencia al origen en tiempo finito y eliminación de chattering. El método de la función descriptiva es un método general para análisis del chattering.

25 Trabajo abierto Análisis del chattering considerando efecto de actuadores Análisis del chattering para otros controladores de orden superior.

26 Referencias [1] Utkin, V., Güldner,J., Shi, J.;Sliding mode control in electromechanical systems. Taylor & Francis, 1999. [2] Sabanovic, A., Fridman, L., Spurgeon,S. (Eds.); Variable structure systems: from principles to implementation, IEE Books (por salir). [3] Edwards, C., Spurgeon, S.K.; Sliding Mode Control. Theory and applications. Taylor & Francis, 1988 [4] Boiko, I., Fridman, L. “Universal chattering test for the second order sliding modes algorithms” Proceedings of the 8th Workshop of Variable Structure Systems, Septiembre 2004, (por salir). [5] Boiko, I., Fridman, L., M.I. Castellanos; Analysis of second-order sliding mode algorithms in the frequency domain. IEEE Transactions on Automatic Control, Junio 2004, (por salir) . [6] Yu, X., Xu, J. (Eds.); Variable structure systems: Towards the 21st. century. Springer-Verlag, 2002.

27 Ejemplo Planta Actuador primer orden twisting super-twisting  Amp
1) 75 2.53e-6 66.16 2.33e-4 2) 100 1.3e-4 53.52 9.48e-6 55.18 4.81e-4 (Boiko, Fridman, 2004)

28 Existencia del modo deslizante
Se propone una superficie de deslizamiento atrayente. Para garantizar la existencia del modo deslizante debe satisfacerse Intituivamente


Descargar ppt "Modos deslizantes de orden superior"

Presentaciones similares


Anuncios Google