Descargar la presentación
La descarga está en progreso. Por favor, espere
1
OPERACIÓN DE CIRCUITOS ELECTRONICOS DIGITALES
M. en C. Baldemar Irineo Carrasco
2
UNIDAD 1, Resultado de Aprendizaje 1.1
Analiza circuitos lógicos combinatorios, empleando sistemas y códigos numéricos.
3
CONTENIDO A. Identificación de las características de la electrónica digital. Orígenes Conceptos básicos Importancia Aplicaciones B. Análisis de circuitos lógicos empleando sistemas numéricos. Sistemas numéricos: Binario, Hexadecimal
4
CONTENIDO Aritmética y métodos de conversión
Representación de números con signo Aritmética binaria. Aritmética octal Aritmética hexadecimal Métodos de conversión
5
CONTENIDO C. Análisis de códigos de computadora. Códigos numéricos.
Códigos de caracteres y otros códigos Códigos para detección y corrección de errores
6
A. Identificación de las características de la electrónica Digital
Origen. La electrónica digital ha sido una revolución tecnológica muy importante y decisiva de las últimas décadas. Su evolución vertiginosa ha cambiado el ritmo de los tiempo y representa el liderazgo tecnológico de la vida moderna.
7
A. Identificación de las características de la electrónica Digital
Los avances alcanzados en el campo de la electrónica digital han permitido el desarrollo y la fabricación masiva, a bajo costo, de calculadoras de bolsillo, relojes digitales, computadoras personales, robots, y toda una generación de aparatos y sistemas inteligentes de uso doméstico, comercial, industrial, automotriz, científico, médico, etc.
8
A. Identificación de las características de la electrónica Digital
Conceptos Básicos Es una parte de la electrónica que se encarga de sistemas electrónicos en los cuales la información está codificada en dos únicos estados. A dichos estados se les puede llamar "verdadero" o "falso", o más comúnmente 1 y 0, refiriéndose a que en un circuito digital hay dos niveles de tensión.
9
B. Análisis de circuitos lógicos empleando sistemas numéricos
Sistema Binario: es un sistema de numeración en el que los números se representan utilizando solamente los dígitos cero y uno (0 y 1). Es el que se utiliza en las computadoras, su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).
10
B. Análisis de circuitos lógicos empleando sistemas numéricos
11
B. Análisis de circuitos lógicos empleando sistemas numéricos
Sistema Hexadecimal: El sistema numérico hexadecimal o sistema hexadecimal (Hex) es un sistema de numeración que emplea 16 símbolos. Su uso actual está muy vinculado a la informática y ciencias de la computación, pues los computadores suelen utilizar el byte como unidad básica de memoria.
12
B. Análisis de circuitos lógicos empleando sistemas numéricos
13
B. Análisis de circuitos lógicos empleando sistemas numéricos
Aritmética y métodos de conversión: En las siguientes figuras se presentan las operaciones de la aritmética binaria.
14
B. Análisis de circuitos lógicos empleando sistemas numéricos
Aritmética Hexadecimal.
15
B. Análisis de circuitos lógicos empleando sistemas numéricos
Métodos de Conversión Binario a Decimal.
16
B. Análisis de circuitos lógicos empleando sistemas numéricos
Métodos de Conversión Hexadecimal a Decimal.
17
B. Análisis de circuitos lógicos empleando sistemas numéricos
Métodos de Conversión:
18
C. Análisis de códigos de computadora
Código BCD: Utiliza 4 dígitos binarios para representar un dígito decimal (0 al 9). Es más fácil ver la relación que hay entre un número decimal (base 10) y el número correspondiente en binario (base 2).
19
UNIDAD 1, Resultado de Aprendizaje 1.2
Opera circuitos lógicos combinacionales, considerando los fundamentos de la lógica electrónica
20
CONTENIDO A. Análisis de circuitos lógicos empleando álgebra booleana.
Postulados básicos Dualidad Teoremas fundamentales B. Operación de circuitos de conmutación. Formas algebraicas de las funciones de conmutación Formas SOP y POS Formas canónicas
21
CONTENIDO Compuertas lógicas AND, OR, NAND, NOR, XOR, XNOR
C. Análisis de circuitos combinatorios. Método algebraico Método de la tabla de verdad Análisis de diagramas de tiempo.
22
A. Análisis de circuitos lógicos empleando álgebra booleana
Origen del Algebra Booleana: Se llama así en honor a George Boole, matemático inglés autodidacta, que fue el primero en definirla como parte de un sistema lógico. El álgebra de Boole fue un intento de utilizar las técnicas algebraicas para tratar expresiones de la lógica proposicional.
23
Algebra Booleana En la actualidad, el álgebra de Boole se aplica de forma generalizada en el ámbito del diseño electrónico. Claude Shannon fue el primero en aplicarla en el diseño de circuitos de conmutación eléctrica biestables, en Esta lógica se puede aplicar a dos campos: Análisis y Diseño
24
Operaciones Básicas
25
Teoremas Fundamentales
Teoremas del Algebra de Boole
26
B. Operación de circuitos de Conmutación
Suma de Productos (SOP) Un término producto, también llamado minitérmino, es un término que consiste en la multiplicación Booleana de literales (variables o sus complementos). Cuando dos o más productos se suman en una Suma Booleana, la expresión resultante es una Suma de Productos (SOP). 𝑿=𝑨𝑩+𝑨𝑩𝑪 𝒀=𝑨 𝑩 + 𝑨 𝑩
27
Suma de Productos (SOP)
Una expresión SOP puede tener un término con una sola variable. Una barra (complemento) no se puede extender a más de una variable. Sin embargo más de una variable en un término puede tener una barra. 𝑨+𝑨𝑩𝑪 𝑨 𝑩 𝑪 𝑨 𝑩 𝑪
28
Suma de Productos (SOP)
Implementar una expresión SOP requiere simplemente ORear los productos de 2 o más compuertas AND. Un término producto es producido por una operación AND, y la suma de dos o más términos producto se produce con una operación OR. Implementación de la expresión SOP 𝑨𝑩+𝑩𝑪𝑫+𝑨𝑪
29
Suma de Productos (SOP)
Implementación de la expresión SOP: 𝑨𝑩+𝑩𝑪𝑫+𝑨𝑪
30
Compuertas Lógicas y Tablas de Verdad
31
Diagramas de Tiempo
32
UNIDAD 1, Resultado de Aprendizaje 1.3
Simplifica funciones de circuitos lógicos combinatorios, empleando mapas de Karnaugh
33
1) 𝑩 𝑩 A B X 1 𝑨 𝑨
34
2) A B C X 1 𝑪 𝑪 𝑨 𝑩 𝑨 𝑩 𝑨𝑩 𝑨 𝑩
35
A B C D X 1 3) 𝑪 𝑫 𝑪 𝑫 𝑪𝑫 𝑪 𝑫 𝑨 𝑩 𝑨 𝑩 𝑨𝑩 𝑨 𝑩
36
A B C D X 1 4) 𝑪𝑫 𝟎𝟎 𝟎𝟏 𝟏𝟏 𝟏𝟎 𝟎𝟎 𝟎𝟏 𝑨𝑩 𝟏𝟏 𝟏𝟎
37
CONCLUSIONES La evolución de la electrónica analógica permitió la aparición de nuevos componentes electrónicos como los transistores y posteriormente los circuitos integrados. La lógica booleana se aplicó en la nueva tecnología digital y permitió su modelado, análisis e implementación. Los Circuitos Digitales presentan varias ventajas respecto a los circuitos Analógicos.
38
CONCLUSIONES Los Circuitos Digitales permitieron el desarrollo tecnológico de las Computadoras, las redes de Datos y los sistemas de comunicación. Los elementos básicos son las compuertas Digitales: Compuertas AND, OR, NOT, NOR, XOR que implementan las funciones lógicas. El sistema de numeración empleado es el Binario, consta de dos dígitos: 0 y 1.
39
CONCLUSIONES El sistema Hexadecimal es el empleado en los sistemas de computo y en la Programación. Se hace necesario realizar conversiones entre los sistemas de numeración Binario, Decimal y Hexadecimal. El sistemas Digitales se representan mediante: a) Expresión Algebraica, b) Tabla de Verdad o c) Diagrama de Tiempo.
Presentaciones similares
© 2024 SlidePlayer.es Inc.
All rights reserved.