Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porPatricio San Juan Modificado hace 10 años
1
Introducción a los diagramas de fase para el diseño de materiales
Olga García Moreno Noviembre 2007 C A B AB m
2
CONTENIDOS Conceptos y Fundamentos Termodinámicos Sistemas de 1 componente Sistemas de dos componentes: Determinación de diagramas de fases Fusión parcial Análisis de microestructuras Compuestos intermedios: Fusión congruente e incongruente Solución sólida Líquidos inmiscibles Sistemas de tres componentes: Con eutécticos binarios: Secciones isotermales Con compuestos intermedios y fusión congruente: Alkemades Con compuestos intermedios y fusión incongruente Sistemas de cuatro componentes
3
Fundamentos termodinámicos
Estudio de las relaciones de fases mediante el estudio de diagramas de fases Diagramas de fases: representación en diagramas temperatura- composición- presión. Construcción: Cálculos termodinámicos: datos suficientes para establecer las relaciones Métodos experimentales: construcción de los diagrmas de fases a partir de datos experimentales Experimental: termodinámica + cinética Concepto de equilibrio termodinámico Importancia: interpretación de microestructuras, diseño de materiales, etc
4
Fundamentos termodinámicos
Sistema: porción del universo que se puede aislar para su estudio Fase: porción del sistema con la misma estructura o parte físicamente homogénea. Implica la existencia de una interfase Componente: número mínimo de elementos o compuestos químicos para definir una fase
5
Fundamentos termodinámicos
Equilibrio Las propiedades del sistema no varían en el tiempo Puede ser alcanazado desde distintos caminos con respecto a las variables del sistema Termodinámicamente: Un sistema en equilibrio tiene la mínima energía libre G= E+ PV -TS
6
Fundamentos termodinámicos
Regla de las fases (o de Gibbs) Sirve para definir las condiciones de equilibrio en térmicos de las relaciones entre el número de fases y componentes de un sistema F+L=C+2 Considerando las variables: T, P y composición Grado de libertad (L): es el número de variables intensivas que pueden ser alteradas independiente y arbitrariamente sin provocar la desaparición o formación de una nueva fase
7
Sistemas De un componente De dos componentes: binarios De tres componentes: ternarios De cuatro componentes: cuaternarios
8
Sistemas de un componente
F+L=C+2 C=1 En A: Una fase en equilibrio L=2 En B: Dos fases en equlibrio L=1 En C: Tres fases en equilibrio L=O (invariante)
9
Sistemas de dos componentes
F+L=C+2 C=2 A B Regla de la palanca A B X 100% A 0% B 100% B 0% A XA= XB AB * 100 % de A
10
Sistemas de dos componentes
Presión constante
11
Tres fases: A, B y líquido
Sistemas de dos componentes Presión constante F+L=C+1 C=2 Fusión en composiciones puras Fusión parcial en intermedias Liquidus Solidus E= Eutéctico Tres fases: A, B y líquido Invariante La cristalización de X dará cristales de A + B en la proporción de la composición X
12
Sistemas de dos componentes
Cristalización Sistemas de dos componentes T1 % Líquido % Cristales A T2 a/(a+b) *100 % Líquido 2 b/(a+b) *100 % Cristales A T3 c/(c+d) *100 % Líquido 3 d/(c+d) *100 % Cristales A TE Comienza cristalización B T cte hasta desaparición del líquido
13
Sistemas de dos componentes
Fusión El primer líquido tiene la composición de E y con el aumento de la T evoluciona según marca la curva liquidus Fusión congruente La fusión de 80 % A + 20% B da un líquido X para T> T1
14
Sistemas de dos componentes
Interpretación de Microestructuras
15
Sistemas de dos componentes
Compuesto intermedio Fusión congruente del compuesto AB2
16
Sistemas de dos componentes
Compuesto intermedio P= Peritéctico Una fase reacciona con el líquido para formar otra fase nueva Tres fases: Invariante Fusión incongruente del compuesto En
17
Sistemas de dos componentes
Cristalización de X= 13%SiO2 + 87%Mg2SiO4 Cristales de Fo + En T<1800 ºC Fo + L hasta TP T=1580 ºC (TP) Fo + En + LP T<1580 ºC Fo + En Fusión de 60 %Fo + 40 %En El primer líquido tiene la composición de P y En funde para dar Líquido + Fo, hasta consumirse En Fusión incongruente
18
Sistemas de dos componentes
Cristalización de Y= 30%SiO2 + 70%Mg2SiO4 Composición de En Cristales En T<1650 ºC Fo + L hasta TP T=1580 ºC (TP) Fo + LP -> En T<1580 ºC En Fusión incongruente de En
19
Sistemas de dos componentes
Cristalización de Z= 34%SiO2 + 66%Mg2SiO4 Cristales Qtz + En T<1600 ºC Fo + L hasta TP T=1580 ºC (TP) Fo + LP -> En + L T<1580 ºC En + L hasta TE T<1540 ºC En + Qtz
20
Sistemas de dos componentes con solución sólida
Una sola fase cristalina con una composición que puede variar dentro de unos límites sin la aparición de una segunda fase
21
Sistemas de dos componentes con solución sólida
Fusión de Plagioclasa ss: An50 1220 ºC: comienza a fundir Líq composición E 1410 ºC: termina de fundir Líq composición A 1220 ºC < T < 1410 ºC Líquido en equilibrio con cristales de Anss según la regla de la palanca con las composiciones que marca la curva solidus
22
Sistemas de dos componentes con solución sólida
solvus Solución Sólida con un mínimo Solución Sólida con exsolución Extensión de gap de solubilidad para formar un eutéctico
23
Sistemas de dos componentes con solución sólida
Eutectoide Peritectoide Tres fases sólidas están en equilibrio Puntos invariantes con sólo fases sólidas
24
Sistemas de dos componentes con líquidos inmiscibles
x M= Monotéctico
25
Microestructuras y diagramas de fase binarios
26
Sistemas de tres componentes
F+L=C+2 C=3
27
Sistemas de tres componentes
F+L=C+1 Presión constante C=3 Líneas Isotermas E= Eutéctico ternario
28
Sistemas de tres componentes
29
Sistemas de tres componentes Cristalización de X
X: composición final cristales de A + B + C T = 980 ºC X intersecta la superficie liquidus 980 ºC x Campos primarios de cristalización
30
Sistemas de tres componentes T = 980 ºC
X intersecta la superficie liquidus Cristales de C T < 980 ºC Líquido evoluciona por la extensión de la línea CX hacia O B + L T = 820 ºC (L) % C= a/(a+b)*100 % Líquido=b/(a+b) C + L En O se alcanza la línea PE: cristaliza A + C y el líquido evoluciona hacia E 820 ºC A + L
31
En M el líquido coexiste con A y C % Cristales= MX/MN*100
% Líquido= XN/MN*100 Sistemas de tres componentes En M la composición de las fases sólidas está marcada por N % A= NC/AC *100 % C= AN/AC*100 B + L La composición del líquido es la de M en términos de A, B y C C + L A + L La cristalización continua hasta el invariante E donde se consume todo el líquido para dar A + C +B en la proporción de X
32
Sistemas de tres componentes
Sección isoterma de A-B-C a 700 ºC Liq
33
Sistemas de tres componentes con compuesto intermedio
con fusión congruente Compuesto intermedio W Con fusión congruente en el binario El ternario se divide en dos triángulos Definir campos de cristalización primarios
34
Sistemas de tres componentes con compuesto intermedio
con fusión congruente Líneas de Alkemade y triángulos de compatibilidad Una línea de Alkemade es la recta que une las composiciones de 2 fases primarias cuyas áreas son adyacentes y la intersección de las cuales forma una curva límite entre fases Reglas de Alkemade: 1.- La temperatura, a lo largo de una curva límite entre fases, decrece alejándose de la línea de Alkemade. 2.- La temperatura máxima en una curva límite entre fases se encuentra en la intersección de ésta con la línea de Alkemade ( o en la extrapolación de ésta en el caso que no la corte).
35
Sistemas de tres componentes con compuesto intermedio
con fusión congruente
36
Sistemas de tres componentes con compuesto intermedio
con fusión congruente Cristalización de A dará cristales de W + Z+ X T<liquidus: cristalización de Z El líquido evoluciona según la línea que se aleja de Z En B comienza cristalización de W TE1: cristalización de X hasta consumir el líquido A
37
Sistemas de tres componentes con compuesto intermedio
con fusión congruente Cristalización de M dará cristales de W + Z Es un binario M La cristalización termina al alcanzar O, que equivale al eutéctico en ese sistema binario
38
Sistemas de tres componentes con compuesto intermedio
con fusión incongruente B D C A D es compuesto intermedio en el binario con fusión incongruente Es necesario definir los triángulos para conocer la composición final: P, Q, S, T y X
39
Sistemas de tres componentes con compuesto intermedio
con fusión incongruente D Cristalización de P dará cristales de A + D + C T< 1090 ºC: cristalización de A El líquido evoluciona según la línea que se aleja de A En T comienza cristalización de D A + L P El líquido evoluciona según la curva hacia R En R comienza cristalización de C
40
Sistemas de tres componentes con compuesto intermedio
con fusión incongruente D Cristalización de Q dará cristales de D + C T< 900 ºC: cristalización de A El líquido evoluciona según la línea que se aleja de A En T comienza cristalización de D consumiendo A A + L Q El líquido evoluciona según la curva hacia R En R comienza cristalización de C y todo A es consumido
41
Sistemas de tres componentes con compuesto intermedio
con fusión incongruente D Cristalización de S dará cristales de D + C +B T< 850 ºC: cristalización de A El líquido evoluciona según la línea que se aleja de A En T comienza cristalización de D consumiendo A A + L S El líquido evoluciona según la curva hacia R En U se consume todo A y cristaliza sólo D Se abandona la curva límite de los campos A+liq y D+liq y el líquido sigue la recta que se aleja de D hasta N y continúa por la curva límite de los campoas D+liq y C+liq cristalizando C hasta E En E comienza cristalización de B
42
Sistemas de tres componentes con compuesto intermedio
con fusión incongruente D Cristalización de T dará cristales de D + C +B T= 800 ºC: cristalización de A + D El líquido evoluciona según la línea que se aleja de D consumiendo A T Cristalización de D hasta V donde comienza a cristalizar B El líquido evoluciona según la curva hacia E En E comienza cristalización de C
43
Sistemas de tres componentes con compuesto intermedio
con fusión incongruente D Cristalización de X dará cristales de D + C +B T< 860 ºC: cristalización de D El líquido evoluciona según la línea que se aleja de D x D+L Cristalización de D hasta Y donde comienza a cristalizar B El líquido evoluciona según la curva hacia E En E comienza cristalización de C
44
Sistemas de tres componentes con solución sólida
La soución sólida Ab-An está expresada por la curva que conecta los dos eutécticos binarios: VALLE
45
Sistemas de tres componentes con líquidos inmiscibles
Líquidos inmiscibles en el ternario Intersección de la superficie liquidus y su proyección
46
Sistemas de cuatro componentes
K: A= 61 B=29 C=6 D=4 Redefinir el sistema en la sección B’ - D’ - C’
47
La vida real… con Ramón Torrecillas
48
Bibliografía Bergeron, Clifton G.;Risbud, Subhash H.;Bereron, Clifton G Introduction to Phase Equilibria in Ceramics Columbus, Ohio: American Ceramic Society, 1997 Kingery, W. David; Bowen, H. K.; Uhlmann, Donald R. Introduction to Ceramics John Wiley & Sons, 1976 Philpotts, A. R. Principles of Igneous and Metamorphic Petrology. Prentice Hall, 1990
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.