Descargar la presentación
La descarga está en progreso. Por favor, espere
1
CURSO DE FÍSICA DOCENTE: ALEXANDER URREA B.
FLUIDOS CURSO DE FÍSICA DOCENTE: ALEXANDER URREA B.
2
CONTENIDO Características de los fluidos Densidad Presión
Variación de la presión en un fluido en reposo Flotabilidad y principio de Arquímedes Fluidos en movimiento La ecuación de continuidad Ecuación de Bernoulli Aplicaciones de la ecuación de Bernoulli Movimiento de un fluido con velocidad constante Flujo de salida de un tanque
3
Características de los fluidos
No resiste a la deformación, ofrece resistencia pequeña o nula a las fuerzas cortantes. Es completamente deformable, toma la forma de su recipiente. La fuerza sobre él, que debe ser normal a la superficie
4
Densidad La densidad media, r, se define como:
La relación entre la densidad de cualquier líquido y la densidad del agua se llama gravedad específica. Fluido Densidad (kg/m3) Núcleo del Sol 1.6 x 105 Mercurio líquido 13.6 x 103 Núcleo de la Tierra 9.5 x 103 Glicerina 1.26 x 103 Agua 1.00 x 103 Un buen aceite de oliva 0.92 x 103 Alcohol etílico 0.79 x 103 Aire a nivel del mar 1.29
5
Presión La presión se define como la fuerza por unidad de área, que actúa perpendicularmente a una superficie: Bajo la influencia de la gravedad, la presión varía como función de la profundidad. Suponga una pequeña área DA en un punto r, y calculemos el límite cuando DA 0. Representamos con DF la fuerza perpendicular a esta área, tenemos DF DA r
6
Ejemplo El colchón de una cama de agua mide 2.00 m de largo, 2.00m de ancho y 30 cm de profundidad. a) Encuentre el peso del agua en el colchón. b) Encuentre la presión sobre el piso. M = rV = (1.0 x 103)(2 x 2 x 0.3) = = 1.2 x 103 kg. W = Mg = (1.2 x 103)(9.8) = 1.18 x 104 N P = F/A = 1.18 x 104 /(2 x 2) = 2.95 kPa 1 Pa = 1 N/m2 2.00 m 30 cm 2.00 m
7
Variación de la presión en un fluido en reposo
Un cilindro delgado imaginario de fluido se aísla para indicar las fuerzas que actúan sobre él, manteniéndolo en equilibrio Fhacia arriba = (p + Dp)A Fhacia abajo = pA + (Dm)g = pA + r (A Dy)g Igualando pA + DpA = pA + r (A Dy)g
8
Es fácil llegar a: O sea: p = p0 + rgy La presión es independiente de la posición horizontal Principio de Pascal: el mismo cambio de presión aplicada a cualquier punto en un fluido en reposo, se transmite a cada una de sus partes.
9
Pregunta ¿Por que la altura del nivel del agua en los vasos comunicantes es la misma?
10
Ejemplo En un elevador de automóviles que se emplea en un taller, el aire comprimido ejerce una fuerza sobre un émbolo de sección transversal que tiene un radio de 5 cm. Esta presión se transmite por medio de un líquido a un segundo émbolo de 15 cm de radio. ¿Qué fuerza debe ejercer el aire comprimido para levantar un auto de 13,300 N? ¿qué presión de aire producirá esta fuerza? Se cumple que: Entonces: F1 A1 d1 A2 d2 La presión es: F2
11
Fuerza sobre un dique La altura del dentro de un dique de ancho w es H. Determine la fuerza resultante ejercida por el agua sobre el dique Presión a una profundidad h P = rgh = rg(H – y) Fuerza de un elemento horizontal sobre la cortina F = P dA = rg(H – y)w dy La Fuerza total es: h h H dy y w O F = ½rgwH2
12
Tarea Una alberca tiene dimensiones de 30.0 m X 10.0 m y un fondo plano. Cuando la alberca está llena a una profundad de 2.00 m con agua potable, ¿cuál es la fuerza total ejercida por el agua sobre el fondo? ¿Sobre cada extremo? ¿Sobre cada lado?
13
Ley de Pascal Una consecuencia de la ecuación p = p0 + rgh
Es que si cambia el valor de p0, este cambio se refleja en todo el fluido. Esto no lleva al siguiente principio: Principio de Pascal El mismo cambio de presión aplicada a cualquier punto de un fluido en reposo, se transmite a cada una de sus partes.
14
Aplicación de la ley de Pascal
La presión en y1 es la presión atmosférica. Dentro de la columna debe ser la misma en este nivel. La columna de mercurio ejerce una presión dada por p1 = p0 + rhg gh Donde p0 es la presión en la parte superior de la columna debida al mercurio que se evapora por el vacío en la parte superior. El valor de p0 es despreciable. La presión atmosférica equilibra la presión de la columna de mercurio. Entonces: p1 = rHg gH Al nivel del mar y a 0o C H = m, entonces p1 = x 105 Pa
15
Tubo en forma de U ragua = 1.0 x 103 kg/m3 rbromuro = 1.26 x 103 kg/m3
hw Encontrar la relación entre las alturas de los líquidos hab agua Bromuro de amilo Para el Bromuro pab = p0 + rab g hab Para el agua pw = p0 + rw g hw
16
Flotabilidad y principio de Arquímedes
La presión en el fondo del cubo es más grande en el fondo que en la parte superior por una cantidad rwgh. A Fneta = Fhacia abajo - Fhacia arriba = rghA - rwgyA
17
Podemos interpretar la diferencia entre el peso del bloque y la fuerza neta como la fuerza de flotación hacia arriba: B = Fg – Fneta Cuando el bloque está parcialmente sumergido, se tiene: B = rwgyA Cuando el bloque está totalmente sumergido, se tiene: B = rwghA = rwgV El principio de Arquímedes establece que: La fuerza de flotación sobre un objeto sumergido es igual al peso del líquido desplazado.
18
Ejemplo Una corona de “oro” pesa 7.84 N en el aire y 6.89 N sumergida en agua. La densidad del oro es 19.3 x 103 kg/m3.. ¿la corona está hecha de oro sólido? La fuerza de flotación sobre la corona es: B = 7.84 – 6.89 = 0.98 N El volumen de agua desplazado se calcula con rwgVw = B El volumen es Vw = 1.0x10–4 m3. La densidad de la corona es: rc = mc/Vc = mcg/Vcg = 7.84/(1.0x10–4 x 9.8) = 8 x 103 kg/m3.
19
Ejemplo plomo aire Un globo de plomo rpb = 11.3x103 kg/m3 de radio R y espesor t ni flota ni se hunde. Encuentre el grosor t. El volumen del plomo es aprox. Vpb = 4pR2t Si suponemos t << R. El peso del plomo es Wpb = mg = rpb Vpbg = 4pR2t rpbg El peso del agua desplazada Ww = 4pR3 rwg/3 Igualando y despejando t se obtiene t = 3mm R t
20
Discusión Conteste las siguientes preguntas
Un globo de helio se fija mediante un hilo al piso de un autobús. El autobús acelera hacia adelante. ¿en que dirección se mueve el globo? El sifón está limitado por la altura h0 que puede alcanzar. ¿Qué determina ese límite? ¿Qué pesa más, 1 ton de espuma plástica o 1 ton de plomo? ¿Cuál de las dos tiene mayor volumen? h0
21
Tarea Calcule la altura de una columna de fluido en un barómetro en el cual se usa agua o alcohol. ragua = 1.0 x 103 kg/m3 ralcohol = 0.79 x 103 kg/m3
22
Tarea Una pieza de aluminio con 1.00 kg de masa y kg/m3 de densidad está suspendida de un resorte y entonces se sumerge por completo en un recipiente de agua (Fig. P15.23). Calcule la tensión en el resorte antes y b) después de sumergir el metal
23
Tarea ¿Cuál debe ser el área de contacto entre una copa de succión (completamente al vacío) y un techo, si la copa debe soportar el peso de un estudiante de 80kg? Un cubo de madera de 20.0 cm de lado y una densidad de 650 kg/m3 flota en el agua. a) ¿Cuál es la distancia desde la cara superior horizontal del cubo hasta el nivel del agua? b) ¿Cuánto peso de plomo debe ponerse sobre la parte superior del cubo para que éste quede justo al nivel del agua?
24
Fluidos en movimiento Nos concentraremos en el flujo estable, es decir, en el movimiento de fluido para el cual v y p no dependen del tiempo. La presión y la velocidad pueden variar de un punto a otro, pero supondremos que todos los cambios son uniformes. Un gráfico de velocidades se llama diagrama de línea de flujo. Como el de la siguiente figura.
25
SIPLIFICACIONES Emplearemos las siguientes hipótesis:
El fluido es incomprensible. La temperatura no varía. El flujo es estable, y entonces la velocidad y la presión no dependen del tiempo. El flujo no es turbulento, es laminar. El flujo es irrotacional, de modo que no hay circulación. El fluido no tiene viscosidad.
26
La ecuación de continuidad
Considere el siguiente tubo de flujo. De acuerdo a la conservación de la masa, se tiene: r1v1 A1 =r2v2 A2 Si nos restringimos a fluidos incomprensibles, entonces r1 =r2 y se deduce que v1 A1 = v2 A2 El producto (velocidad perpendicular a un área) x (área) es el flujo, F.
27
Ejemplo Cada segundo 5525 m3 de agua fluyen sobre los 670 m del risco de la porción Horseshoe Fall de las cataratas del Niágara. El agua llega aproximadamente a 2 m de fondo cuando alcanza el risco ¿Cuál es su rapidez en ese instante?
28
Ecuación de Bernoulli Dado la ley de la conservación de la energía:
Wneto = DK + DU La fuerza ejercida por la presión p1 es: p1A1, y el trabajo realizado por esta fuerza es: W1 = F1Dx = p1A1Dx1 = p1V similarmente para el lado derecho W2 = -F2Dx2 = -p2A2Dx2 = -p2V, El trabajo neto es W1 + W2 = p1V – p2V = (p1 – p2)V DK es DU es
29
simplificando En otras palabras: La ecuación de Bernoulli establece que la suma de la presión, (p), la energía cinética por unidad de volumen (1/2 r v2) y la energía potencial gravitacional por unidad de volumen (r gy) tiene el mismo valor en todos los puntos a lo largo de una línea de corriente.
30
Fluido en reposo Para un fluido en reposo v = 0, entonces
p + rgh = constante Esta es la ley de Pascal
31
Efecto Bernoulli Para un flujo horizontal p + ½ rv2 = constante
La presión en menor donde la velocidad del fluido es mayor y viceversa. p1 p2 v2 v1 v1 < v2 p1 > p2
32
Tarea Por una manguera contra incendios de 6.35 cm de diámetro fluye agua a una relación de m3/s. La manguera termina en una boquilla con diámetro interior de 2.20 cm. ¿Cuál es la rapidez con la cual el agua sale de la boquilla?
33
El tubo de Venturi v1 A1 = v2 A2
La altura promedio del fluido es constante, entonces De la ecuación de continuidad v1 A1 = v2 A2 Es fácil llegar a:
34
Ley de Torricelli La presión del aire en la superficie del líquido (1) es la misma que en el orificio (2), entonces podemos establecer Suponiendo que v1 = 0 (el nivel del líquido cambia muy lentamente), llegamos a
35
Discusión ¿Dónde es más grande la presión, en A o en B? A B
¿Por qué se levanta el techo con un viento fuerte? ¿Por qué sale líquido por la boquilla al apretar la perilla? ¿Hacia donde es empujada la pelota, hacia arriba o hacia abajo?
36
Tarea En un gran tanque de almacenamiento abierto en la parte superior y lleno de agua se forma un pequeño hoyo en un costado, en un punto 16 m por debajo del nivel del agua. Si la relación del flujo de la fuga es de 2.5 x 10-3 m3/min., determine a) la rapidez (m/s) con que sale el agua por el hoyo, b) el diámetro de éste.
37
Tarea para la casa 43. En la figura P15.43 se muestra un sifón con el que se extrae agua de un tanque. El sifón tiene un diámetro uniforme. Considere flujo estable sin fricción, a) Si la distancia h= 1.00 m, encuentre la rapidez del flujo de salida en el extremo del sifón, b) ¿Cuál es el límite de la altura en la parte superior del sifón sobre la superficie del agua? (Para tener un flujo continuo de líquido la presión no debe descender por debajo de la presión de vapor del líquido.) En el Applet “laboratorio de densidad” haga una medición de las masas y volúmenes de los objetos y estime la densidad del líquido de la probeta.
Presentaciones similares
© 2024 SlidePlayer.es Inc.
All rights reserved.