Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porCleto Alcantar Modificado hace 10 años
1
Dipolo Infinitesimal Sandra Cruz-Pol, Ph. D. INEL 5305 ECE UPRM Mayagüez, PR
2
Outline Maxwell’s equations Maxwell’s equations Wave equations for A and for Wave equations for A and for Power: Poynting Vector Power: Poynting Vector Dipole antenna Dipole antenna
3
Maxwell Equations Ampere: Faraday: Gauss:
4
Relaciones de Continuidad
5
Potencial Magnético Vectorial A Si lo sustituimos en la Ley de Faraday: Si lo sustituimos en la Ley de Faraday: is the Electric Scalar Potential
6
Usando Ley de Ampere:
7
Lorentz’ condition Si escogemos Si escogemos Queda la Ecuacion de Onda Queda la Ecuacion de Onda donde J es la densidad de una fuente de corriente, si hay.
8
de la Ec. de Gauss Eléctrica
9
Wave equation For sinusoidal fields (harmonics): For sinusoidal fields (harmonics):where
10
Outline Maxwell’s equations Maxwell’s equations Wave equations for A and for Wave equations for A and for Power: Poynting Vector Power: Poynting Vector Dipole antenna Dipole antenna
11
Poynting Vector
12
Average S Para medios sin pérdidas:
13
Outline Maxwell’s equations Maxwell’s equations Wave equations for A and for Wave equations for A and for Power: Poynting Vector Power: Poynting Vector Infinitesimal Dipole antenna Infinitesimal Dipole antenna
14
Find A from Dipole with current J Line charge w/uniform charge density, L Line charge w/uniform charge density, L x z r r 0 JzJz AzAz Assume the simplest solution A z (r):
15
To find…. Assume the simplest solution A z (r):
16
Fuera de la Fuente (J=0) Which has general solution of:
17
Apply B.C. If radiated wave travels outwards from the source: If radiated wave travels outwards from the source: To find C2, let’s examine what happens near the source. (in that case k tends to 0) To find C2, let’s examine what happens near the source. (in that case k tends to 0) So the wave equation reduces to So the wave equation reduces to
18
Now we integrate the volume around the dipole: And using the Divergence Theorem And using the Divergence Theorem
19
Comparing both, we get:
20
Now from A we can find E & H Using the Victoria IDENTITY: Using the Victoria IDENTITY: And And Substitute: Substitute:
21
The magnetic filed intensity from the dipole is:
22
Now the E field:
23
The electric field from infinitesimal dipole:
24
General @Far field r> 2D 2 / General @Far field r> 2D 2 / Note that the ratio of E/H is the intrinsic impedance of the medium.
25
Power :Hertzian Dipole
26
Resistencia de Radiacion La potencia tiene parte real y parte reactiva La potencia tiene parte real y parte reactiva La potencia irradiada es: La potencia irradiada es: Comparando con la P total, se halla la Impedancia Comparando con la P total, se halla la Impedancia COmparando cno la P rad, halla la R rad. COmparando cno la P rad, halla la R rad.
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.