Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porVisitación Landin Modificado hace 9 años
1
Lenguaje algebraico 1. Lenguaje y expresión algebraica
UNIDAD 08 Lenguaje algebraico 1. Lenguaje y expresión algebraica 2. Monomios y polinomios 3. Operaciones con expresiones algebraicas 4. Igualdades, identidades y ecuaciones 5. Soluciones de una ecuación 6. Resolución de ecuaciones de 1ª grado 7. Resolución algebraica de problemas 1º ESO | UNIDAD 08 | MATEMÁTICAS
2
“El triple del resultado de sumar ocho a un número”
LENGUAJE ALGEBRAICO 1.- Lenguaje y expresión algebraica El lenguaje algebraico permite escribir, lo que queremos expresar verbalmente, con letras y números unidos con operaciones matemáticas. “El triple del resultado de sumar ocho a un número” 3 · (x + 8) 1º ESO | UNIDAD 08 | MATEMÁTICAS
3
1.- Lenguaje y expresión algebraica
LENGUAJE ALGEBRAICO 1.- Lenguaje y expresión algebraica Una expresión algebraica es un conjunto de letras y números unidos por operaciones matemáticas. Cada sumando de una expresión algebraica recibe el nombre de término y tiene una parte numérica (coeficiente) y una parte formada por letras (parte literal) términos coeficiente x2 – 7x + 4 parte literal 1º ESO | UNIDAD 08 | MATEMÁTICAS
4
1.- Lenguaje y expresión algebraica
LENGUAJE ALGEBRAICO 1.- Lenguaje y expresión algebraica El valor numérico de una expresión algebraica es el número que resulta de sustituir las letras por números y realizar las operaciones indicadas. El valor numérico de: 6x3 + 5x2 – 9x + 3, para x = 2, es 53 6 · (2)3 + 5 · (2)2 – 9 · (2) + 3 = – = 53 1º ESO | UNIDAD 08 | MATEMÁTICAS
5
Monomio: expresión algebraica con un solo término.
LENGUAJE ALGEBRAICO 2.- Monomios y polinomios Monomio: expresión algebraica con un solo término. 5x3y2 2ab -3 El grado de un monomio es la suma de los exponentes de la parte literal. El primero es 5. Dos monomios son semejantes si tienen la misma parte literal. Así, 3x es semejante a –2x. Binomio: expresión algebraica con dos términos. 7x – 3 1º ESO | UNIDAD 08 | MATEMÁTICAS
6
El grado de un polinomio es el del término de mayor grado.
LENGUAJE ALGEBRAICO 2.- Monomios y polinomios Polinomio: expresión algebraica con varios términos. 5x2 – 3x + 4 El grado de un polinomio es el del término de mayor grado. 5x2 – 3x + 4 coeficiente término independiente Grado del polinomio 2 1º ESO | UNIDAD 08 | MATEMÁTICAS
7
LENGUAJE ALGEBRAICO 3.- Operaciones con expresiones algebraicas. Adición y sustracción Para sumar o restar monomios deben ser semejantes. Se suman o restan los coeficientes y se deja la misma parte literal. 7x xy2 + 5x3 – 3 xy2 12x xy2 1º ESO | UNIDAD 08 | MATEMÁTICAS
8
LENGUAJE ALGEBRAICO 3.- Operaciones con expresiones algebraicas. Multiplicación y división Para multiplicar o dividir un monomio por un número se multiplica o divide el coeficiente del monomio por el número y se deja la misma parte literal. 5 · (4 x2y) = (5 · 4) x2y = 20 x2y (4 x2y) : 2 = (4 : 2) x2y = 2 x2y 1º ESO | UNIDAD 08 | MATEMÁTICAS
9
3.- Operaciones con expresiones algebraicas. Multiplicación y división
LENGUAJE ALGEBRAICO 3.- Operaciones con expresiones algebraicas. Multiplicación y división Para multiplicar o dividir dos monomios se multiplican o dividen por un lado los coeficientes y, por otro, las partes literales teniendo en cuenta las propiedades de multiplicación y división de potencias con la misma base. (5x3y2) · (– 3xy3) = (5 · (– 3)) (x3y2 · xy3) = –15x4y5 (20x6y9) : (5x2y3) = (20 : 5) (x6y9 : x2y3) = 4x4y6 1º ESO | UNIDAD 08 | MATEMÁTICAS
10
4.- Igualdades, identidades y ecuaciones
LENGUAJE ALGEBRAICO 4.- Igualdades, identidades y ecuaciones Una igualdad es una expresión con dos miembros separados por un igual, donde el resultado del primer miembro es igual al del segundo miembro. (3 + 2) · (3 – 2) = 5 Las igualdades en las que aparecen letras y números relacionados con operaciones matemáticas se denominan igualdades algebraicas. 3a + 5a – 2a = 6a 1º ESO | UNIDAD 08 | MATEMÁTICAS
11
4.- Igualdades, identidades y ecuaciones
LENGUAJE ALGEBRAICO 4.- Igualdades, identidades y ecuaciones Las igualdades tienen las siguientes propiedades — Si se suma o se resta a los dos miembros de una igualdad un mismo número la igualdad sigue siendo cierta. (3 + 2) · (3 – 2) = 5 (3 + 2) · (3 – 2) + 2 = 5 + 2 — Si se multiplican o dividen los dos miembros de una igualdad por un mismo número, distinto de cero, la igualdad sigue siendo cierta. (3 + 2) · (3 – 2) = 5 (3 + 2) · (3 – 2) · 7 = 5 · 7 1º ESO | UNIDAD 08 | MATEMÁTICAS
12
En toda ecuación tiene los siguientes elementos:
LENGUAJE ALGEBRAICO 4.- Igualdades, identidades y ecuaciones Una ecuación es una igualdad algebraica que solo es correcta para algunos valores de las letras. La igualdad x + 1 = 5 solo se cumple para x = 4, luego es una ecuación. En toda ecuación tiene los siguientes elementos: primer segundo miembro miembro x + 5 = 2 + 2x incógnitas términos 1º ESO | UNIDAD 08 | MATEMÁTICAS
13
5.- Soluciónes de una ecuación
LENGUAJE ALGEBRAICO 5.- Soluciónes de una ecuación Encontrar la solución o soluciones de una ecuación es hallar el valor o valores de la incógnita o de las incógnitas que cumplen la igualdad. La solución de la ecuación: x – 5 = 3 es x = 8, pues 8 – 5 = 3 3 = 3 Las ecuaciones se pueden clasificar: - Ecuaciones compatibles determinadas: nº soluciones finito - Ecuaciones compatibles indeterminadas: nº sol. infinito - Ecuaciones incompatibles: sin solución. 1º ESO | UNIDAD 8 | MATEMÁTICAS
14
La solución de la ecuación es x = 12.
LENGUAJE ALGEBRAICO 6.- Resolución de ecuaciones de primer grado Ejemplo 1: x – 5 = 7 Sumamos 5 a los dos miembros y operamos: x – = x = 12 La solución de la ecuación es x = 12. Ejemplo 2: 4x = 28 Dividimos entre 4 a los dos miembros y operamos: x = 7 La solución de la ecuación es x = 7. 1º ESO | UNIDAD 8 | MATEMÁTICAS
15
6.- Resolución de ecuaciones de primer grado
LENGUAJE ALGEBRAICO 6.- Resolución de ecuaciones de primer grado Ejemplo 3: 6 · (x + 2) = x + 3 · (x + 6) Quitamos los paréntesis aplicando la propiedad distributiva: 6x + 12 = x + 3x + 18 Reducimos los términos semejantes: 6x + 12 = 4x + 18 Restamos 4x a los dos miembros: 6x – 4x + 12 = 4x – 4x + 18 2x + 12 = 18 Restamos 12 a los dos miembros: 2x + 12 – 12 = 18 – 12 2x = 6 Dividimos entre 2 los dos miembros: x = 3 La solución es x = 3. 1º ESO | UNIDAD 8 | MATEMÁTICAS
16
6.- Resolución de ecuaciones de primer grado
LENGUAJE ALGEBRAICO 6.- Resolución de ecuaciones de primer grado Ejemplo 4: Quitamos los denominadores multiplicando los dos miembros de la ecuación por el m.c.m., en este caso, 4: 4 · = 4 · Quitamos los paréntesis y operamos: + 8 = 10x + 8 = x + 44 Restamos x y 8 a los dos miembros: 10x – x + 8 – 8 = x – x + 44 – 8 9x = 36 Dividimos entre 9 los dos miembros: = x = 4 La solución de la ecuación es x = 4. 1º ESO | UNIDAD 8 | MATEMÁTICAS
17
7.- Resolución algebraica de problemas
LENGUAJE ALGEBRAICO 7.- Resolución algebraica de problemas 1) Leer y entender el problema para ver que preguntan y que datos conocemos 2) Planteamos el problema: buscamos igualdad que relacione la incógnita con los datos 3) Resolvemos la ecuación planteada 4) Comprobamos que la solución cumple el enunciado del problema 1º ESO | UNIDAD 8 | MATEMÁTICAS
Presentaciones similares
© 2024 SlidePlayer.es Inc.
All rights reserved.