Descargar la presentación
La descarga está en progreso. Por favor, espere
1
VARIOGRAMA
2
VARIOGRAMA EXPERIMENTAL VARIOGRAMA TEÓRICO
Contenido VARIOGRAMA EXPERIMENTAL VARIOGRAMA TEÓRICO Propiedades básicas Definición Estudio de modelos de variograma Cálculo a partir de los datos Características básicas Definición Ajuste de modelos de variograma
3
Variograma Teórico-Definición
Es una herramienta que permite analizar el comportamiento espacial de una propiedad o variable sobre una zona dada Detectar direcciones de anisotropía Ejemplo: Zonas de influencia y su extensión (correlación espacial) Variabilidad con la distancia
4
Variograma Teórico-Definición
Continuidad espacial B A 1 2 3 4 5 6 7 8 9 1 5 3 7 9 8 2 4 6 MEDIA = 5 VARIANZA=50/9 HISTOGRAMAS IGUALES
5
Variograma Teórico-Definición
Continuidad espacial
6
Variograma Teórico-Definición
Continuidad espacial
7
Variograma Teórico-Definición Curva de proporción vertical
Unidad 2 Unidad-5 Unidad 1 Unidad-4
8
Variograma Teórico-Definición Curva de proporción vertical
9
Variograma Teórico-Definición
es estacionaria o intrínseca Si
10
Variograma Teórico-Características
Valor promedio de la diferencia al cuadrado de los valores de la propiedad en dos puntos separados por una distancia |h| es independiente de la localización x depende del módulo y de la dirección del vector h
11
Variograma Teórico-Características
Detección de características que varían según la dirección y la distancia
12
Variograma Teórico-Características
13
Variograma Experimental-definición Variograma Experimental
Variograma Teórico Variograma Experimental
14
Variograma Experimental-definición
Coordenadas estratigraficas La correlación espacial se debe calcular dentro de la misma unidad estratigráfica
15
Variograma Experimental-obtención
Se escoge una dirección Se escoge una distancia o lag h Se calcula para valores de h,2h, 3h,...,nh Se grafica versus los valores h,2h, 3h,...,nh
16
Variograma Experimental-obtención Datos Igualmente espaciados:
h
17
Variograma Experimental-obtención Datos Igualmente espaciados:
h
18
Variograma Experimental-obtención Datos Irregularmente espaciados:
Puede ocurrir que no existan valores de la variable a la distancia h Puede ocurrir que no existan valores de la variable en la dirección
19
Variograma Experimental-distancia
Clases de distancia: Para cada lag h se define una tolerancia y se utilizan únicamente los puntos que se encuentran a una distancia mayor o igual a y menor que h 2h 3h
20
Las clases de distancia no se superponen
Variograma Experimental-distancia Clases de distancia: El valor de se escoge como el 50% del valor del lag h. De esta forma: Las clases de distancia no se superponen No hay valores de la variable fuera de una clase de distancia
21
Variograma Experimental-distancia
1.2 2.4 2.8 4.9 1 2 3 4 5 6 1.2 2.4 2.8 4.9 1.2 2.4 2.8 4.9
22
Variograma Experimental-distancia
23
Variograma Experimental-dirección
Clases de dirección : Para cada dirección se define una tolerancia y se utilizan únicamente los puntos que se encuentran entre las direcciones y
24
Variograma Experimental-dirección
puntos descartados puntos aceptados
25
Variograma Experimental-dirección
puntos aceptados puntos descartados b = ancho de banda
26
Variograma Experimental-distancia & dirección
clase de distancia h h 2h 3h clase de distancia 2h clase de distancia 3h z(x)
27
Variograma Experimental-obtención
28
Variograma Experimental-obtención
Valor del lag h Número n de lags Valor de y n: Cuando se calcula el variograma sobre un dominio D se escoge n de forma tal que: n*h < | D | / 2 h: Distancia promedio entre los pozos A partir del variogram cloud A partir del variograma omnidireccional Se escoge como la dirección de anisotropía de la variable. Se puede obtener a partir de: Información geológica, petrofísica, etc Mapa de variograma :
29
Variograma Experimental-lag
Lag h muy grande 1.2 2.4 2.8 4.9 Lag h pequeño, n muy grande 1.2 2.4 2.8 4.9 Lag h adecuado, valor de n ?
30
Variograma Experimental-lag
31
Variograma Omnidireccional:
Es aquel que no depende de la dirección Se obtiene al escoger la tolerancia angular de forma tal que las direcciones y sean opuestas y perpendiculares a la dirección Se puede pensar como el promedio del variograma experimental en todas las direcciones posibles
32
Variograma Omnidireccional
Variograma direccional Variograma omnidireccional
33
Variogram Cloud Variogram Cloud: Al graficar el valor de los pares versus la distancia se obtiene el variogram cloud
34
Permite detectar valores atípicos o cambios bruscos
Variogram Cloud Variogram Cloud: Permite detectar valores atípicos o cambios bruscos Permite escoger un valor inicial del lag Permite observar la dispersión alrededor del valor de
35
Variogram Cloud
36
Mapa de Variograma Mapa de Variograma : Es una herramienta que permite determinar las direcciones de anisotropía de la variable en estudio
37
Definir una malla (2n+1)*(2n+1)
Mapa de Variograma Definir una malla (2n+1)*(2n+1) Definir el valor del lag h Asignar a cada bloque el valor de h
38
Mapa de Variograma
39
Variograma Experimental-tolerancia angular
40
CARACTERÍSTICAS BÁSICAS
41
Variograma-Características Básicas
1) RANGO Y SILL 2) COMPORTAMIENTO A PEQUEÑAS DISTANCIAS 3) COMPORTAMIENTO A GRANDES DISTANCIAS 4) ANISOTROPÍAS
42
Variograma-Rango & Sill
Distancia a la cual el variograma se estabiliza Sill : Valor constante que toma el variograma en distancias mayores al rango
43
Variograma-Rango & Sill
Si para una distancia dada d las variables Z(x) y Z(x+h) son no correlacionas entonces el variograma es constante Rango: Distancia a partir de la cual no hay correlación Sill: Varianza de la función aleatoria Z
44
Variograma-Rango & Sill
45
COMPORTAMIENTO A PEQUEÑAS DISTANCIAS
Permite estudiar cuán rápido puede variar la variable en estudio a pequeñas distancias. Básicamente el variograma presenta las 4 formas siguientes: 1) DISCONTINUO 2) LINEAL 3) CUADRÁTICO 4) HÍBRIDOS
46
Comportamiento discontinuo Efecto pepita o nugget effect
Puede ocurrir que para distancias cercanas a cero el valor del variograma no se aproxima a cero
47
Z(x) y Z(x+h) difieren mucho
Comportamiento discontinuo Interpretación del nugget effect 1) Variable muy irregular a distancias cortas Z(x) y Z(x+h) difieren mucho no se aproxima a cero
48
Comportamiento discontinuo Interpretación del nugget effect
2) Errores de medición en las variables
49
Comportamiento discontinuo Interpretación del nugget effect
3) presencia de estructuras o ausencia de valores en distancias inferiores a las que se tomaron las muestras
50
Comportamiento Lineal Comportamiento lineal
Indica que para distancias pequeñas, el variograma tiene un comportamiento lineal. Representa variables continuas pero no diferenciables. Así, la propiedad puede cambiar rápidamente de un punto a otro.
51
Comportamiento Lineal Comportamiento lineal
La variabilidad de la propiedad dependerá de la pendiente de la recta en el origen A mayor pendiente, mayor variabilidad A menor pendiente, menor variabilidad
52
Comportamiento Cuadrático Comportamiento Cuadrático
Indica que para distancias pequeñas, el variograma tiene un comportamiento cuadrático. Representa variables sumamente continuas e infinitamente diferenciables. Así, la propiedad NO puede cambiar rápidamente de un punto a otro.
53
Comportamiento Híbrido Comportamiento Híbrido:
Variación más suave a distancias cortas Variación más fuerte a distancias grandes Indica presencia de estructuras actuando a diferentes escalas
54
Comportamiento-grandes distancias VARIABLE NO ESTACIONARIA
Comportamiento a grandes distancias : NO TODOS LOS VARIOGRAMAS POSEEN UN RANGO Y UN SILL FINITO INDICA LA PRESENCIA DE UNA DERIVA O DRIFT VARIABLE NO ESTACIONARIA
55
Comportamiento-grandes distancias
Drift Estimación del variograma Variograma Teórico Sesgo
56
Comportamiento-grandes distancias
D1=E-O D2=N-S
57
Anisotropía Geométrica
Anisotropías Anisotropías : Generalmente cuando el variograma experimental es calculado en distintas direcciones presenta distintos comportamientos con la variación de la distancia. Anisotropía Geométrica Anisotropía Zonal Anisotropía Híbrida
58
Anisotropía Geométrica Anisotropía Geométrica :
Es aquella en la que el variograma en distintas direcciones presenta el mismo sill pero rangos distintos Mayor continuidad espacial en la dirección de mayor rango Menor continuidad espacial en la dirección de menor rango
59
Anisotropía Geométrica
60
Anisotropía Geométrica
61
Anisotropía Zonal : Anisotropía Zonal
Es aquella en la que el variograma en distintas direcciones presenta el mismo rango pero diferente sill Presencia de diferentes estructuras
62
Anisotropía Zonal
63
Anisotropía Híbrida : Anisotropía Híbrida
Es aquella en la que el variograma en distintas direcciones presenta rangos diferentes y distintos sill. Presencia de diferentes estructuras Característico de variogramas horizontales y verticales
64
COMENTARIOS
65
COVARIANZA VS VARIOGRAMA
El variograma se puede utilizar para modelar fenómenos no estacionarios y la covarianza no, por el desconocimiento de la media. Cuando la media es constante pero desconocida no se necesita para el cálculo del variograma, pero si para el de la covarianza. Si la función tiene varianza infinita (no estacionaria) la covarianza no está definida en 0, sin embargo el variograma si y es idénticamente nulo
66
Comentarios CORRELACIÓN VS VARIOGRAMA Fuente información 1 La correlación estadística usual es calculada a distancia cero (dos observaciones en el mismo punto del espacio) y puede no ser representativa El variograma toma en cuenta el espaciamiento y por lo tanto permite ”correlacionar espacialmente” Fuente información 2
67
Es un estadístico de 2 puntos
Comentarios LIMITACIONES DEL VARIOGRAMA Es un estadístico de 2 puntos Utilizar técnicas multipuntos y reconocimiento de patrones
68
LIMITACIONES DEL VARIOGRAMA
Comentarios LIMITACIONES DEL VARIOGRAMA Es extremadamente sensible a valores extremos 7 10 11 12 13 14 9 8 7 10 11 12 25 14 13 2 9 8
69
DEL VARIOGRAMA EXPERIMENTAL AL MODELO DE VARIOGRAMA
70
Ajustar POR QUE HAY QUE CONSTRUIR MODELOS DE VARIOGRAMA ?
El variograma experimental no se puede evaluar en distancias o direcciones intermedias Una interpolación entre los puntos del variograma experimental no garantiza la existencia y unicidad de la solución del sistema de kriging La interpolación no satisface las condiciones que todo variograma debe satisfacer El variograma experimental no satisface las condiciones que todo variograma debe satisfacer
71
Variograma Teórico-propiedades
LOS VARIOGRAMAS TIENEN PROPIEDADES ESPECIALES, CUALQUIER FUNCIÓN QUE DEPENDA DE LA DISTANCIA Y LA DIRECCIÓN NO NECESARIAMENTE ES UN VARIOGRAMA 1) 2) El variograma calculado en la dirección de h es igual al variograma calculado en la dirección de -h h -h
72
Variograma Teórico-propiedades
3) Todo variograma es una funcion definida positiva condicional Para cualquier n, cualesquiera puntos en el espacio y cualesquiera valores tales que se tiene que Esta propiedad permite calcular en forma consistente la varianza de combinaciones lineales de funciones aleatorias
73
Variograma Teórico-propiedades
4) Relación con la función de covarianza Para funciones aleatorias estacionarias se tiene que
74
Variograma Teórico-propiedades
4) Si es el variograma de una funcion aleatoria estacionaria o intrínseca entonces En particular para h suficientemente grande existe una constante c tal que Criterio para el comportamiento del variograma a grandes distancias Criterio para detectar un comportamiento no estacionario
75
Variograma Teórico-propiedades 4) Combinacion lineal de variogramas
Si son modelos de variograma y son valores positivos entonces Permite modelar/ajustar las estructuras imbricadas (nested structures) Permite modelar la anisotropía zonal
76
Variograma Teórico-propiedades
+ =
77
Variograma Teórico-propiedades Modelar la anisotropía zonal
78
MODELOS DE VARIOGRAMA
79
Modelos de variograma isotrópicos más comunes:
Modelo Efecto Pepita Puro Modelo Esférico Modelo Exponencial Modelo Gaussiano Modelo Cúbico Modelo Seno Cardinal Modelo Potencia
80
Modelo Efecto Pepita Puro
Este modelo representa a un fenómeno completamente aleatorio, en el cual no hay correlación espacial No importa cuán cerca se encuentren los valores de las variables, siempre serán no correlacionados
81
Comportamiento lineal en el origen
Modelo Esférico Rango s y sill a Comportamiento lineal en el origen Pendiente igual a Representa fenómenos continuos pero no diferenciables Es uno de los modelos de variograma más utilizados
82
Comportamiento lineal en el origen
Modelo Exponencial Sill s que alcanza asintóticamente Rango aparente igual a a Rango experimental igual a 3a Comportamiento lineal en el origen Pendiente igual a Representa fenómenos continuos pero no diferenciables
83
Rango experimental igual a
Modelo Gaussiano Sill s que alcanza asintóticamente Rango aparente igual a a Rango experimental igual a Comportamiento cuadrático en el origen Representa fenómenos continuos infinitamente diferenciables (sumamente continuos)
84
Comportamiento cuadrático en el origen
Modelo Cúbico Rango a y sill s Comportamiento cuadrático en el origen Representa fenómenos bastante continuos
85
Comportamiento cuadrático en el origen
Modelo Seno Cardinal Sill s que alcanza asintóticamente Rango aparente igual a a Rango experimental igual a 3a Comportamiento cuadrático en el origen Se utiliza para representar fenómenos continuos con periodicidades
86
s se denomina factor de escala
Modelo Potencia s se denomina factor de escala El comportamiento en el origen depende del valor de p Representa fenómenos no estacionarios
87
DE MODELOS ISOTRÓPICOS A MODELOS ANISOTRÓPICOS
88
Modelo Anisotrópicos X Y Los ejes de anisotropía coinciden con los ejes de coordenadas Variograma isotrópico de sill 1 y rango 1 Variograma anisotrópico de sill s con rango en la dirección del eje X y rango en la dirección del eje Y
89
Es un variograma anisotrópico en la dirección
Modelo Anisotrópicos X’ Y’ X Y Los ejes de anisotropía NO coinciden con los ejes de coordenadas 1) Transformar los puntos del sistema de coordenadas XY al sistema de coordenadas X’Y’ = matriz de rotación 3) Evaluar el variograma isotrópico en el resultado. Es un variograma anisotrópico en la dirección con eje mayor igual a y eje menor igual a 2) Proceder como antes para ajustar la longitud de los ejes de anisotropía = matriz para transformar las distancias
90
comportamiento espacial en conjunto
VARIOGRAMA CRUZADO comportamiento espacial en conjunto
91
Variograma Cruzado Si Z, Y son funciones aleatorias estacionarias o intrínsecas, el variograma cruzado de ellas se define como : Para su estimación se utiliza el variograma cruzado experimental
92
Variograma Cruzado-propiedades
1) 2) 3) El variograma cruzado es una función simétrica 4) Relación con la función de covarianza cruzada
93
Variograma Cruzado-propiedades 4) Desigualdad de Hölder
Consecuencias: El modelo de variograma cruzado no puede ser escogido independientemente de cada uno de los variogramas individuales El producto de cada uno de los sill de los variogramas individuales es mayor que el cuadrado del sill del variograma cruzado
94
Variograma Cruzado-propiedades
4) Modelo lineal de coregionalización Permite modelar en forma consistente el variograma cruzado y los variogramas individuales modelos de variogramas
95
VARIOGRAMA DE FUNCIONES INDICADORAS
Modelando el comportamiento espacial de Facies
96
Funciones Indicadoras
La función indicadora de la facies F se define como Si se considera la facies F como un conjunto aleatorio entonces su función indicadora es una función aleatoria que puede ser estacionaria o no. En lo sucesivo asumiremos que la función indicadora de F es estacionaria
97
Funciones Indicadoras 3) Relación con la función de covarianza
Propiedades 1) 2) El sill de variogramas de funciones indicadoras no puede ser mayor a 0.5 3) Relación con la función de covarianza
98
Funciones Indicadoras
4) Desigualdad Triangular En particular Consecuencia : Un variograma con comportamiento en el origen de la forma no puede ser el variograma de una función indicadora
99
Funciones Indicadoras
5) Rango y Anisotropías R2 R1
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.