La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Universidad Peruana de Ciencias Aplicadas

Presentaciones similares


Presentación del tema: "Universidad Peruana de Ciencias Aplicadas"— Transcripción de la presentación:

1 Universidad Peruana de Ciencias Aplicadas
TÓPICOS DE MÁTEMATICA MA112(EPE) UPC TEMA : TRANSFORMACIONES LINEALES

2 Objetivos: Definir el concepto de Transformación Lineal (T.L)
Identificar las principales propiedades de las T.L. Describir el concepto de Núcleo e Imagen de una Transformación Lineal. Mostrar la aplicación de las Transformaciones Lineales en las rotaciones.

3 Introducción: Las transformaciones lineales tienen una gran variedad
de aplicaciones importantes, así tenemos: En un circuito eléctrico con m mallas y n fuentes de voltaje, las m corrientes de malla son funciones de los n voltajes de las fuentes. Las coordenadas en la pantalla del Display de un punto son función de las coordenadas (x,y,z) del punto en el mundo real y de las coordenadas (xo,yo,zo) del observador. Una empresa puede concebirse como un objeto que relaciona un conjunto de entradas (capital, productividad de los operarios,parámetros de operación , inventarios, etc) con un conjunto de salidas o resultados que son función de las entradas, entre ellas: producción de diferentes productos, ganancias, capital acumulado, etc.

4 Graficación por Computadora
Con la graficación por computadora se dispone de recursos en el cual se desplaza la imagen de un diseño ,hacia la derecha ,la izquierda ,girar la imagen para apreciar otro lado de ella ,reducirla ,ampliarla,etc. Este recurso que posee una computadora mediante un software se realiza a través de las transforma- ciones lineales.

5 Ejemplos de transformaciones lineales
Reflexión respecto al eje Y. En R2 consideremos la aplicación f tal que f(x,y)=(-x,y). Es fácil probar que es una transformación lineal.

6 Reflexión respecto al eje Y
(-x,y) (x,y) x

7 Ejemplo 2: Operadores de proyección.
La aplicación definida por: T(x,y,z)=(x,y,0) es una transformación lineal. Su función es la de proyectar un vector del espacio tridimensional en el plano XY.

8 Proyección en el plano XY
z Proyección en el plano XY (x,y,z) y (x,y,0) x

9 TRANSFORMACIÓN LINEAL
Sea T una aplicación de Rn en Rm : T: Rn Rm T se llama Transformación Lineal si se cumple: 1. T ( V + V ) = T( V ) + T ( V ) 2. T ( c V ) = c T( V ) , c: escalar 1

10 Ejemplos: Probar si las siguientes aplicaciones son Transformaciones Lineales: T: R R2 , T(x,y) = (x , y2 ) T: R R2 , T(x,y,z) = (-2x, x+y)

11 Forma general de las transformaciones lineales
T: R R2 , T(x,y) = (a1x+a2y, b1x+b2y) T: R R2 , T(x,y,z) = (a1x+a2y+a3z, b1x+b2y+b3z) T: R R3 , T(x,y) = (a1x+a2y, b1x+b2y, c1x+c2y)

12 T: R R3 , T(x,y,z) = (a1x+a2y+a3z, b1x+b2y+b2z, c1x+c2y+c3z)

13 PROPIEDADES DE LAS T.L. 1) 2) 3) T(0 ) = 0
R m R n 2) T(a V + b V ) = a T ( V ) + b T( V ) 2 1 T(a V + a V a V ) = a T ( V ) + a T( V ) + 2 1 k a T ( V ) 3)

14 Ejemplo: T: R R2 Definamos solamente: T( i ) = (2; 3) , T( j ) = (1; 4) Luego: T(5; 6) = T( 5 i + 6 j ) = 5 T( i ) + 6 T( j ) = 5 (2; 3) + 6 (1; 4) = (16; 39)

15 Encontremos ahora, la forma general de T :
T(x; y) = T( x i + y j ) = x T( i ) + y T( j ) = x (2; 3) + y (1; 4) = ( 2 x + y; 3 x + 4 y ) Así tenemos: T: R R2 T(x; y) = ( 2 x + y; 3 x + 4 y )

16 Observaciones: Una aplicación T de Rn en Rm es lineal si la imagen de toda combinación lineal en Rn es una combinación lineal en Rm. En particular en 2 para b=0 y para a=b=1 se tiene T(a x) =a T(x) T(x+y) = T(x)+T(y)

17 NO ES UNA TRANSFORMACIÓN LINEAL
Ejemplo: La aplicación f(x,y)=(x-y,y+x+2) NO ES UNA TRANSFORMACIÓN LINEAL Ya que : f(0,0)=(0,2)

18 Sea A: matriz de orden m x n. Entonces, la transformación:
TRANSFORMACIÓN LINEAL Y MATRICES TEOREMA: Sea A: matriz de orden m x n. Entonces, la transformación: T : R R tal que m n T( X ) = A X , es una Transformación Lineal

19 ( RESPECTO A LAS BASES CANÓNICAS )
REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN LINEAL ( RESPECTO A LAS BASES CANÓNICAS ) TEOREMA: Toda T.L. de R a R se puede representar matricialmente como T( X ) = A m x n X de forma única. n m matriz estándar o canónica

20 A = ... Dada la transformación lineal T : Rn Rm T( e )
MATRIZ QUE REPRESENTA A UNA TRANSFORMACIÓN LINEAL RESPECTO A LAS BASES CANÓNICAS Dada la transformación lineal T : Rn Rm A = ... T( e ) j Las columnas de A son las coordenadas de T( ej ) relativas a la base canónica Rm

21 T:Rn Rm Ker ( T ) = { v Rn / T( v ) = 0 }
DADA LA TRANSFORMACIÓN LINEAL : T:Rn Rm EL NÚCLEO o KERNEL DE T, ES: Ker ( T ) = { v Rn / T( v ) = } Rm LA IMAGEN DE T, ES: Img ( T ) = { w Rm / T( v ) = w }

22 T: Rn Rm Rn Rm Img(T) Ker(T)

23 Ejemplo: Dada la transformación lineal: T:R2 R2 : T(x,y) = (x-2y, 4y-2x) a) determine el núcleo o kernel de T y dé una base, determine la imagen de T y represéntela geométricamente en el sistema de coordenadas rectangulares XY.


Descargar ppt "Universidad Peruana de Ciencias Aplicadas"

Presentaciones similares


Anuncios Google