Descargar la presentación
La descarga está en progreso. Por favor, espere
1
13 La genética mendeliana
2
13 La herencia. Genética mendeliana Conceptos básicos de genética
Las experiencias de Mendel. Interpretación de los experimentos de Mendel Herencia intermedia y codominancia Retrocruzamiento o cruzamiento prueba Teoría cromosómica de la herencia. Aportaciones de Morgan y Bridges. La determinación del sexo. Herencia ligada al sexo Ligamiento y recombinación Genética humana
3
Lectura inicial Gregor Johann Mendel es considerado el padre de la genética moderna. A partir de sus experimentos desarrolló una teoría de la herencia mucho antes de que se descubrieran los cromosomas y se comprendiera su comportamiento. Johann Mendel ( ), vivió una infancia humilde en una aldea de la actual república Checa. A los 21 años ingresó en un monasterio agustino en la ciudad de Brünn. En 1847 se ordenó sacerdote y tomó el nombre de Gregor. Durante sus estudios en la Universidad de Viena se interesó por el estudio de las variaciones en las plantas, así como en la utilidad de la experimentación y las matemáticas como herramientas para analizar la naturaleza. En 1854 regresó a Brünn y en 1857 comenzó sus famosos experimentos con la planta del guisante en un pequeño jardín. Mendel fue original y meticuloso en su trabajo. Proyectó cuidadosamente cada experimento con el fin de descubrir la forma en la que se transmitían los caracteres heredables. En 1866, cuando consideró terminado su trabajo, publicó los resultados de su experimentación en la revista de la Sociedad de Ciencias Naturales de Brünn. Teniendo en cuenta que en ese momento no se tenían conocimientos acerca de la naturaleza del ADN y de los genes, sus trabajos tuvieron poca repercusión científica. En 1868 fue nombrado abad del monasterio, lo que le apartó definitivamente de sus investigaciones. Murió en 1884 sin ver reconocida la importancia de sus trabajos. El trabajo de Mendel fue ignorado durante treinta y cinco años, hasta que en 1900, tres científicos, Hugo de Vries, Karl Correns y Erick Von Tchermak, lo redescubrieron de manera independiente y dieron su nombre a las leyes fundamentales de la herencia. Gregor Johann Mendel
4
La genética mendeliana
Esquema La genética mendeliana Reproducción y herencia Teoría cromosómica de la herencia Herencia ligada al sexo Genética humana Homocigotos y heterocigotos El ligamiento y los mapas cromosómicos Técnica de polinización cruzada y herencia de un carácter Árbol genealógico Grupos sanguíneos La determinación del sexo Herencia de dos caracteres Herencia ligada al sexo en humanos La determinación cromosómica del sexo Herencia del daltonismo La determinación por haplodiploidía Sexualidad en las plantas
5
Gregor Johann Mendel ( )
8
Monjes del Monasterio de Santo Tomás
9
Mendel Abad del Monasterio
(retrato póstumo)
10
Genes (elemente o factor hereditario)– son las unidades hereditarias.
1. Conceptos básicos de genética Genes (elemente o factor hereditario)– son las unidades hereditarias. Un gen es un fragmento de ADN que determina una característica en particular. Genoma – es el conjunto de todos los genes que tiene un individuo. Alelos – son formas diferentes de un gen. Alternativas para un carácter (color semilla verde o lisa).
11
Alelo dominante – gen que siempre expresa la característica que determina.
Se representa con una letra mayúscula. A, AB, ABC Alelo recesivo – gen que no expresa la característica que determina cuando está presente el alelo dominante. Se representa con una letra minúscula. a, ab, abc
12
Genotipo – constitución genética de las características de un individuo.
Cada característica es determinada por un par de genes (alelos). Se representa con un par de letras por característica. Genotipo homocigoto (puro) – tiene los dos alelos iguales para una o más características. Se representa con dos letras mayúsculas o minúsculas. Homocigoto dominante – tiene dos alelos dominantes. AA; AABB Homocigoto recesivo – tiene dos alelos recesivos. aa; aabb
13
Un gen contiene la información para determinar un carácter hereditario
Genes y localización Alelos Un gen contiene la información para determinar un carácter hereditario Loci Locus: Posición de un gen en un cromosoma Cada gameto tiene un solo alelo (alternativa) para cada carácter. Transmisión de genes en la meiosis
14
A a Alelos AA Alelos aa Alelos Aa Genes dominantes y recesivos
(color amarillo) a Recesivo (color verde) Alelos AA Alelos aa Alelos Aa Homocigótico o raza pura Heterocigótico o híbrido
15
Genotipo Fenotipo Genotipo y fenotipo
Conjunto de genes que posee un individuo y que ha heredado de sus progenitores. Fenotipo Conjunto de caracteres que manifiesta un organismo. Fenotipo = Genotipo + Ambiente
16
Genotipo heterocigoto (híbrido) - tiene dos alelos diferentes para una o más características.
Aa; AaBb Monohíbrido – genotipo que sólo es híbrido en una característica. Aa; AABbcc Dihíbrido – genotipo híbrido en 2 características. AaBb; AABbCc Trihíbrido – genotipo híbrido en 3 carácterísticas. AaBbCc
17
Homocigotos y heterocigotos
A A A A a a a a A A a a Homocigoto dominante Homocigoto recesivo Heterocigoto
18
Individuos homocigóticos y heterocigóticos
INICIO ESQUEMA RECURSOS INTERNET Individuos homocigóticos y heterocigóticos Alelos idénticos AA aa Individuos homocigóticos Individuos heterocigóticos Alelos diferentes Aa Aa AA Aa Aa aa ANTERIOR SALIR
19
Gameto – célula sexual haploide que resulta de meiosis.
Cruce monohíbrido – cruce de dos individuos híbridos en una característica. Aa X Aa Cruce dihíbrido – cruce de dos individuos híbridos en dos carácterísticas. AaBb X AaBb Cruce trihíbrido – cruce de dos individuos híbridos en tres características. AaBbCc X AaBbCc Gameto – célula sexual haploide que resulta de meiosis. Siempre se representará con una letra de cada característica (de cada par de alelos).
20
P – generación parental
F1 – primera generación filial F2 – segunda generación filial Característica recesiva – alternativa de una característica que no se manifiesta cuando está el alelo dominante en el genotipo que la representa. Característica dominante – alternativa de una característica que se manifiesta siempre aunque esté presente el alelo recesivo en el genotipo.
21
2. Las experiencias de Mendel
Usó el método experimental. Diseñó sus propios experimentos. Utilizó métodos cualitativos y cuantitativos. Desarrolló sus propios cómputos matemáticos. Llevó un diario de las observaciones de sus cruces.
22
Observó 7 diferencias en características y 14 variedades en las plantas de guisantes.
Estableció tres leyes de sus experimentos que hoy se usan como la base de la genética. Sus resultados no han podido ser refutados. Correns, Tschmack y De Vrie confirmaron sus resultados a principios del siglo XX.
24
Ventajas de utilizar Pisum sativum
Es fácil de cultivar. Crecimiento rápido Produce semillas abundantes. Presenta muchas características y variedades. Es de polinización fácil: autopolinización y polinización cruzada. Produce formas puras y formas híbridas.
25
Los 7 caracteres estudiados por Mendel
Vaina inmadura verde o amarilla Semilla lisa o rugosa Semilla amarilla o verde Pétalos púrpuras o blancos Vaina hinchada o hendida Tallo largo o corto Floración axial o terminal Los 7 caracteres estudiados por Mendel Línea pura: población que produce descendencia homogénea para el carácter particular en estudio; todos los descendientes producidos por autopolinización o fecundación cruzada, dentro de la población, muestran el carácter de la misma forma.
27
SEMILLAS
28
VAINAS
29
TALLOS
30
Órganos sexuales de la flor
CARPELO ESTAMBRE Estigma Polen Antera Estilo Filamento Ovario FECUNDACIÓN
31
Método experimental de Mendel:
Para evitar la autofecundación se cortan las anteras antes de que maduren. Se depositan en el estigma de la flor los granos de polen elegido. ANTERA produce polen ESTIGMA, ESTILO, OVARIO Ventajas: polinización antes de que se abra la flor: imposible una polinización accidental. No se da cruzada. La manipulaba antes de la apertura de la flor.
32
Técnica de polinización cruzada y herencia de un carácter
Raza pura lisa (LL) Raza pura rugosa (ll) Eliminación de estambres Obtención de polen × P LL ll L L l l Polinización artificial F1 Ll Ll Ll Ll Ll × Ll Polinización con polen de raza pura lisa L l L l F2 F2: semillas lisas y rugosas F1: semillas lisas LL Ll Ll ll
34
Experimentos de Mendel
Hizo cruces entre plantas que presentaban alternativas diferentes para una característica. Utilizó líneas puras. Estudió la descendencia en varias generaciones. Analizó los datos de manera cuantitativa.
35
Las experiencias de Mendel
Gregor Johann Mendel Polinización de plantas de guisante por fecundación cruzada Método: Selección de siete caracteres Uso de líneas puras Estudio de la descendencia a lo largo de varias generaciones Análisis de los datos de forma cuantitativa Para saber más: PRIMER GRUPO DE EXPERIMENTOS SEGUNDO GRUPO DE EXPERIMENTOS TERCER GRUPO DE EXPERIMENTOS
36
P AA aa A a Aa F1 X Las experiencias de Mendel
Gregor Johann Mendel Primer grupo de experimentos AA aa P X Cruce de líneas puras para un solo carácter A a Al carácter que aparecía le llamó dominantre, al que no aparecía recesivo Aa F1 Fenotipo: 100 % amarillo
37
Aa Aa X A a A a A a AA Aa A Aa aa a Las experiencias de Mendel
INICIO ESQUEMA RECURSOS INTERNET Las experiencias de Mendel Gregor Johann Mendel Aa Aa X Segundo grupo de experimentos A a A a Autofecundación de los híbridos A a Conclusión de Mendel: Cada carácter estaba determinado por dos factores hereditarios, cada uno proveniente de un progenitor. Por tanto, lo que se hereda no son los caracteres, sino los factores que los determinan y que pueden manifestarse o no en la descendencia AA Aa A Aa aa a ANTERIOR SALIR
38
Aa Aa X A a A a A a AA Aa A Aa aa a Las experiencias de Mendel
Gregor Johann Mendel Aa Aa X Segundo grupo de experimentos A a A a Autofecundación de los híbridos VOLVER A a AA Aa A Aa aa a Lo que se heredan no son los caracteres, sino los factores que los determinan
39
Las experiencias de Mendel
AALL aall X AaLl F1 Cruce de líneas puras para dos caracteres Gregor Johann Mendel Tercer grupo de experimentos AaLl Autofecundación de los dihíbridos AALL AALl AaLL AaLl AALl AAll AaLl Aall F2 AaLL AaLl aaLL aaLl AaLl Aall aaLl aall Cada factor se hereda de manera independiente de los demás y puede combinarse con los otros originado nuevas combinaciones
40
Las experiencias de Mendel
INICIO ESQUEMA RECURSOS INTERNET Las experiencias de Mendel AALL aall X AaLl F1 Cruce de líneas puras para dos caracteres Gregor Johann Mendel Tercer grupo de experimentos AaLl Autofecundación de los dihíbridos AALL AALl AaLL AaLl AALl AAll AaLl F2 Aall Conclusión: Cada factor se hereda de forma independiente de los demás y puede combinarse con los otros originando combinaciones de caracteres que no estaban presentes en la generación filial aaLL aaLl AaLL AaLl AaLl Aall aaLl aall ANTERIOR SALIR
41
Ley de la uniformidad de los híbridos de la primera generación filial
Interpretación de los experimentos de Mendel Primera ley Ley de la uniformidad de los híbridos de la primera generación filial Cruce de homocigotos para un solo carácter Líneas puras Gregor Johann Mendel Generación parental Carácter dominante Carácter recesivo Primera generación filial (F1)
42
Ley de la segregación de los caracteres en la F2
Interpretación de los experimentos de Mendel “Al cruzar dos híbridos de la primera generación, los alelos se separan y se distribuyen en los gametos de manera independiente” Segunda ley Ley de la segregación de los caracteres en la F2 Gregor Johann Mendel Primera generación (F1) Segunda generación filial (F2)
43
100 % semillas amarillas lisas
Herencia de dos caracteres P Gametos F1 100 % semillas amarillas lisas GAMETOS DE LA F1
44
Herencia de dos caracteres
F1 Gametos IR A F2
45
Ley de la independencia de los caracteres
Interpretación de los experimentos de Mendel F1 Tercera ley Ley de la independencia de los caracteres Gregor Johann Mendel F2 Herencia de dos caracteres F1
46
Ley de la independencia de los caracteres
Interpretación de los experimentos de Mendel F1 Tercera ley Ley de la independencia de los caracteres Gregor Johann Mendel F2 “Los distintos alelos se heredan independientemente unos de otros y se combinan al azar en la descendencia”
47
Herencia de dos caracteres
9 lisas amarillas, 3 rugosas amarillas, 3 lisas verdes y 1 rugosa verde Herencia de dos caracteres F2 AL Al aL al AL Al aL al
48
CRUZAMIENTO PRUEBA: RETROCRUZAMIENTO
Individuo problema es de fenotipo dominante. No se conoce su genotipo ¿AA ó Aa? ¿Cómo diferenciarlos? Se cruza con otro individuo de fenotipo y genotipo conocido: es el recesivo (aa).
49
F1 Herencia intermedia Color rojo Color blanco Homocigoto (BB)
INICIO ESQUEMA RECURSOS INTERNET Ocurre cuando ambos alelos expresan por igual su información. El resultado es un híbrido o heterocigoto con un fenotipo con características intermedias entre ambos progenitores, Herencia intermedia Color rojo Color blanco Homocigoto (RR) Homocigoto (BB) Color rosado Fenotipo con características intermedias F1 Heterocigoto o híbrido (RB) Dondiego de noche (Mirabilis jalapa) Ambos alelos expresan por igual su información (alelos equipotentes)
50
A.-HERENCIA INTERMEDIA: DOMINANCIA INCOMPLETA
51
Heterocigoto o híbrido (AB)
Ocurre cuando los dos alelos se manifiestan simultáneamente. Los heterocigoticos presentan rasgos de los dos progenitores. Codominancia Color negro Color blanco Homocigoto (AA) Homocigoto (BB) Color gris Los dos alelos se manifiestan simultáneamente Heterocigoto o híbrido (AB)
53
Sutton y Boveri: 1902 Localización de genes en los cromosomas
Morgan: 1911: Herencia ligada al sexo. En 1913, Calvin Bridges demuestra que los genes están en los cromosomas, y Sturtevant que se colocan de forma lineal sobre el cromosoma, elaborando el primer mapa genético de un organismo: Drosophila melanogaster.
54
Teoría cromosómica de la herencia
Mendel: desconocía la existencia de genes, su localización en los cromosomas y el papel de la meiosis. 1902. Sutton y Boveri : Los genes o factores hereditarios están localizados en los cromosomas. En la meiosis se produce la segregación de los cromosomas. Morgan: Comprobación de la hipótesis en Drosophila melanogaster. Explicación cito- lógica. Thomas Hunt Morgan ( )
55
Mosca de la fruta Se reproduce rápidamente. Tiene pocos requerimientos alimentarios: con poca comida (trozos de plátano o agar agar) se puede alimentar un gran número de ellas. Presenta variaciones hereditarias simples facilmente observables. Dotación cromosómica 2n = 8 Drosophila melanogaster
56
La ordenación de los genes en los cromosomas es lineal.
Teoría cromosómica de la herencia Los factores que determinan los caracteres hereditarios (genes) se localizan en los cromosomas. Cada gen ocupa un lugar determinado en un cromosoma concreto. Este lugar se denomina locus (loci en plural). Los loci para los distintos genes se encuentran situados linealmente a lo largo de los cromosomas. La ordenación de los genes en los cromosomas es lineal. Los alelos se encuentran en los loci de los cromosomas homólogos, por esta razón existe un para para cada carácter. Los genes que están en el mismo cromosoma tienden a heredarse juntos, denominados genes ligados. El fenómeno citológico del sobrecruzamiento o intercambio de segmentos cromosómicos es la causa de la recombinación.
57
(genes independientes)
Los dos genes elegidos por Mendel (color y forma de la semilla se encuentran en distinto cromosoma (genes independientes) Y si los dos genes elegidos por Mendel (color y forma de la semilla se encontrasen en distinto cromosoma (genes ligados)
59
LIGAMIENTO Y RECOMBINACIÓN
Concepto de Ligamiento: Dos loci están ligados cuando se encuentran situados sobre el mismo cromosoma. Todos aquellos loci que se encuentran situados sobre el mismo cromosoma forman un Grupo de Ligamiento. Cuanto más alejados están entre sí dos loci ligados ( V y B) más probable es que se dé sobrecruzamiento entre ellos, esto es, recombinación.
60
Cruzamiento entre razas puras Recombinación genética
Teoría cromosómica de la herencia Cruzamiento entre razas puras Cruzamiento prueba b+b+ vg+vg+ bb vgvg b+b vg+vg b+b vgvg bb vg+vg 41,5 % 8,5 % b+ vg+ b vg Recombinación genética Caracteres estudiados: Cuerpo color claro (b+) Cuerpo color oscuro (b) Longitud normal de alas (cg+) Alas vestigiales (vg)
61
¿Qué es la determinación genética del sexo?
INICIO ESQUEMA RECURSOS INTERNET Formas de determinación genética del sexo ¿Qué es la determinación genética del sexo? Los factores y mecanismos genéticos que determinan si un individuo presenta gónadas masculinas y femeninas ANTERIOR SALIR
62
Formas de determinación genética del sexo
Determinación cromosómica Determinación génica Pepinillo del diablo (Ecballium elaterium) Cariotipo de saltamontes Determinación cariotípica Determinación ambiental Cola de espada (Xiphophorus) Abejas
63
Determinación cromosómica:
XX/XY: Mamíferos/equinodermos/moluscos/ muchos artrópodos XX/X0: Insectos ZZ/ZW: Aves/algunos anfibios/reptiles/peces/algunas mariposas Relación Autosómicos/Sexuales: Insectos Determinación génica: Serie alélica: Pepinillo del diablo Determinación por haplodiploidía: Insectos sociales: Hembras diploides y machos haploides Determinación ambiental: Cocodrilos y temperatura superior a 27º C: Machos Relación de nº de machos / nº de hembras Sustrato de fijación: Moluscos
64
MACHOS HETEROGAMÉTICOS
La determinación cromosómica del sexo MACHOS HETEROGAMÉTICOS MACHOS HOMOGAMÉTICOS Mecanismo XY Mecanismo X0 Mecanismo ZW Mecanismo Z0 P Gametos F1
66
Determinación genética del sexo en la especie humana
Cada óvulo tiene 22 autosomas y un cromosoma X La mitad de los espermatozoides llevan 22 autosomas y un cromosoma X, y la otra mitad 22 autosomas y un cromosoma Y
67
Insectos: ♀ XX ♀ Z0 ♂ X0 ♂ ZZ Aves: ♀ ZW ♂ ZZ
68
La determinación cromosómica o por haplodiploidía (insectos sociales)
♀ ♂ No fecundado Meiosis ♂ Fecundación Mitosis ♀ No existen cromosomas sexuales. El sexo está determinado por el nº de dotaciones cromosómicas. Así, individuos 2n son hembras y n son machos.
69
Determinación génica En el pepinillo del diablo (Ecballium elaterium) la determinación del sexo depende de una serie alélica. El alelo aD determina masculinidad , el a+ hermafroditas y el ad feminidad Machos: (genotipos aD aD ,aD a+, aDad), Hermafroditas: (genotipos a+ a+ ,a+ ad ) Hembras: genotipo ad ad Que un individuo sea de un sexo u otro depende de una o varias parejas de genes.
70
Determinación ambiental
Cocodrilos, aligatores, caimanes… El sexo está determinado por la temperatura a la que se incuban los huevos. T> 27 ºC machos, T<27 hembras En ciertos animales la determinación del sexo depende de circustancias ambientales
71
Determinación ambiental
Bonellia viridis. Las larvas nadan libremente. Si se fijan sobre las rocas dan hembras. Si la larva cae en la trompa de la hembra se desarrolla machos (parásitos y dimunutos) En ciertos animales la determinación del sexo depende de circustancias ambientales
72
Gallinas (ZW) sufren destrucción de ovarios por enfermedad
Determinación ambiental poblacional (inversión sexual) Gallinas (ZW) sufren destrucción de ovarios por enfermedad Xiphorphorus. En superpoblación de hembras algunas se transforman en machos. El sexo depende de la cantidad de machos y hembras en la población
73
HERENCIA LIGADA AL SEXO
Los genes responsables de algunos caracteres se localizan en los genes X e Y, por lo que su determinación está ligada a que una persona sea de uno u otro sexo
74
X Y Y X Segmento diferencial Segmento homólogo
INICIO ESQUEMA RECURSOS INTERNET Cromosomas sexuales humanos X Y Genes holándricos Y Segmento diferencial X Genes ginándricos Segmento homólogo ANTERIOR SALIR
75
El cromosoma X poseee unos 1 100 genes (5 % del genoma).
Herencia ligada al sexo El cromosoma X poseee unos genes (5 % del genoma). Genes ginándricos: Portan genes exclusivos de este cromosoma. No experimentan sinapsis ni sobrecruzamiento. Segmento diferencial con el cromosoma X Segmento homólogo con el cromosoma X X Cromosoma X Y Cromosoma Y Segmento diferencial con el cromosoma X Segmento homólogo con el cromosoma X Genes holándricos: No permiten apareamiento. Existen muchas regiones de heterocromatina y de genes que no codifican proteínas. Segmento homólogo: genes para los mismos caracteres. Permite apareamiento y posterior segregación.
76
X Y Herencia ligada al sexo Segmento diferencial con el cromosoma X
Segmento homólogo con el cromosoma X X Cromosoma X Y Cromosoma Y Segmento diferencial con el cromosoma X Segmento homólogo con el cromosoma X El segmento homólogo permite el apareamiento y posterior segregación de los cromosomas X e Y en la meiosis Segmento homólogo: genes para los mismos caracteres. Permite apareamiento y posterior segregación.
77
El segmento diferencial.
Herencia ligada al sexo Segmento diferencial con el cromosoma X Segmento homólogo con el cromosoma X X Cromosoma X Y Cromosoma Y Segmento diferencial con el cromosoma X Segmento homólogo con el cromosoma X El segmento diferencial. Los genes que se encuentran en X se llaman ginándricos y los que están en el Y holándricos
78
Herencia ligada al sexo en humanos
Déficit anormal de la enzima alfa galactosidasa A Destrucción prematura de glóbulos rojos Distrofia muscular de Duchenne (no desarrollo de músculos) Segmento homólogo con Y Hemofilia A y B Enfermedad de Fabry Anemia hemolítica Distrofia muscular X Síndrome de Lesch-Nylan Albinismo Ictiosis Centrómero Ictiosis: piel seca y escamosa Y Zona inerte (heterocromatina) Zona con genes ligados a Y (ginándricos) Segmento homólogo con X Gen hipertricosis en las orejas Gen SRY. Codifica la síntesis del factor determinante del testículo, responsable durante el desarrollo embrionario del inicio de la diferenciación de las gónadas para formar testículos. Se expresa entre la 7ª y 9 ª semana del desarrollo embrionario
79
Las mujeres tienen dos cromosomas X
Las mujeres tienen dos cromosomas X . Los alelos recesivos solo se pueden manifestar cuando se encuentran en ambos cromosomas. Las mujeres heterocigóticas serán portadoras, ya que llevan uno de los alelos recesivos, aunque no manifiestan el carácter del fenotipo. Los hombres tienen 1 cromosoma X y uno Y. la acción de los genes situados en el segmento diferencial de cada uno de los cromosomas estará influida por el sexo y se expresa siempre, sea dominante o recesiva.
80
Hemofilia Daltonismo Herencia ligada al cromosoma X XDX XDY XDXD XY
Imposibilidad de coagulación de la sangre Gen recesivo en el cromosoma X XHX XHY XHXH XY Ceguera parcial para los colores
82
Herencia del daltonismo
P Mujer con visión normal Hombre con visión normal Mujer portadora Hombre daltónico Gametos F1
83
Carácter influido o controlado por el sexo
Caracteres que aparecen en ambos sexos, pero se expresa más en uno que en otro. Los genes se localizan en regiones autosómicas o pseudoautosómicas y sus expresión depende del contexto hormonal. Ejemplo: calvicie prematura en humanos Genotipo Fenotipo Hombres Mujeres CC Calvicie Calvicie Cc Calvicie No calvicie cc No calvicie No calvicie
84
. La expresión de algunos caracteres depende del sexo del individuo.
Caracteres influidos por el sexo La expresión de algunos caracteres depende del sexo del individuo. Generalmente siguen este comportamiento los caracteres influidos por el ambiente hormonal del individuo. Ej.: Calvicie C (calvicie) c (normal) DOMINANTE(CC o Cc ) RECESIVO
85
EXCEPCIONES A LAS LEYES DE MENDEL
B./C.-HERENCIA CODOMINANTE Y MULTIALÉLICA Grupos sanguíneos: Responsable un gen que presenta tres alelos, de los cuales dos son codominantes entre sí, y a su vez dominantes sobre el tercero: IA codominante con IB, y ambos dominantes sobre i GRUPO SANGUÍNEO GENOTIPOS POSIBLES A IA IA ó IA i B IB IB ó IB i AB IA IB 0 (Cero) ii
86
La herencia de los grupos sanguíneos. Alelismo múltiple
La herencia de los grupos sanguíneos. Alelismo múltiple. Herencia autosómica A B Antígeno B Antígeno A (aglutinas) Anti B en plasma (aglutinógeno) Anti A en plasma O AB No tiene antígenos Antígenos A y B Ninguno Anti A y Anti B en plasma
87
Genética humana (grupos sanguíneos)
Antígeno A Antígeno B Grupo A Grupo B Grupo AB Grupo 0
88
B A AB En las transfusiones sanguíneas reaccionan los antígenos del donante con los anticuerpos del receptor.
89
La herencia de los grupos sanguíneos. Alelismo múltiple
La herencia de los grupos sanguíneos. Alelismo múltiple. Herencia autosómica Rh El sistema Rh depende del antígeno D. Genéticamente, la presencia del factor Rh está determinada por dos alelos: R y r. Los genotipos RR y Rr producen Rh+ y los genotipos rr son Rh- Antígeno D (Rh+) Los individuos Rh- son siempre homicigóticos recesivos (rr) No Anti D (Rh-)
90
Solución: inyectar anticuerpos anti Rh (gammaglobulinas anti Rh)
ERITROBLATOSIS FETAL ♀ ♂ Rh- Rh+ Rh+ Madre Rh- y padre Rh+. Bebé Rh+. En el primer parto los eritrocitos del bebé entran en contacto con la sangre de la madre. La madre formará anticuerpos anti Rh (la madre reconoce como extraño el facto Rh y sintetiza anticuerpos anti Rh). En el segundo embarazo los anticuerpos de la madre pueden pasar de la placenta al embrión ocasionando daños al feto. Solución: inyectar anticuerpos anti Rh (gammaglobulinas anti Rh)
91
La herencia dominante en la especie humana
92
La herencia recesiva en la especie humana
93
El ligamiento y los mapas cromosómicos
Entrecruzamiento
94
HERENCIA MENDELIANA HUMANA
DOMINANTE RECESIVO NACIMIENTO DEL PELO “PICO VIUDA” NO PICO VIUDA HOYUELO EN CARA NO HOYUELO EN CARA LOBULO OREJA LIBRE LOBULO OREJA PEGADO HENDIDURA BARBILLA NO HENDIDURA BARBILLA PECAS NO PECAS CERUMEN HUMEDO CERUMEN SECO DOBLAR LENGUA NO DOBLAR LENGUA VISION NORMAL DALTONISMO VISION MIOPE VISION NORMAL
95
HERENCIA MENDELIANA HUMANA
96
Caracteres fenotípicos en la especie humana
97
Genética humana (árbol genealógico)
98
Símbolos empleados en pedigríes
Gemelos monogóticos Hombre Mujer Sexo no especificado Matrimonio Número hijos de cada sexo 2 3 Familia: 1 niña 1 niño (orden nacimiento) Individuos afectados Heterocigotos alelo autosómico recesivo Gemelos dicigóticos Tema 4: Herencia del sexo
99
Los árboles genealógicos
INICIO ESQUEMA RECURSOS INTERNET Los árboles genealógicos Matrimonio I Hombre Mujer Portador de enfermedad o malformación Hijos II Aborto III Pertenecen a la misma generación 1 2 3 4 5 6 7 8 Hermanos gemelos Matrimonio consanguíneo IV Distintas generaciones ANTERIOR SALIR
100
Ejemplo de pedigrí del albinismo
II 1 2 3 4 5 III 6 7 IV Tema 4: Herencia del sexo
101
MIOPIA HEREDITARIA Carácter fenotipico: Vision
Alelo dominante: Miopia (A) Alelo recesivo: vision normal (a) Genotipo Fenotipo AA Miope Aa aa Vision normal
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.