Descargar la presentación
La descarga está en progreso. Por favor, espere
1
Churn Norris – Retain your customers with ML
Pau Sempere Churn Norris – Retain your customers with ML
3
About me Pau Sempere Working with SQL Server since 2009
Microsoft Machine Learning MCSA SolidQ LinkedIn:
4
Agenda What is Churn? In balance there is virtue KISS
How did we get here?
5
What is Churn?
6
What is Churn? CUSTOMERS STAY ABANDON
7
What is Churn? CUSTOMERS 70% 30% STAY ABANDON
8
What is Churn? CUSTOMERS 95% 5% STAY ABANDON
9
What is Churn?
10
What is Churn?
11
What is Churn? CUSTOMERS WHO? WHY?
12
What is Churn? //debate entre los asistentes, cada uno lo definirá de una manera particular. Si no participan, darles pie, proponer diferentes puntos de vista
13
Key concepts about Churn
CLEAR DEFINITION HISTORICAL DATA CONTEXT PUNTOS CLAVE Esto aplica a todos los problemas de ML del universo, pero especialmente a Churn ya que habla de comportamiento humano
14
DEMO Basic Churn
15
Looking for a better model
Random forest has: N_estimators Max_Depth Max_leaf_nodes … We need to find a better model exploring such combinations
16
DEMO Tuned model
17
In balance there is virtue
18
In balance there is virtue
Churn is an unlikely event
19
In balance there is virtue
OVER SAMPLING UNDER SAMPLING HYBRID METHODS
20
In balance there is virtue
21
In balance there is virtue
22
In balance there is virtue
23
In balance there is virtue
24
In balance there is virtue
Extra techniques (algorithm based) WEIGHT VECTORS BALANCED EXPLORATION
25
DEMO Balancing Churn
26
KISS
27
KISS
28
Tree-based methods Decision Trees Random Forests Boosted Trees (lightgbm, xgboost, rxFastTrees…) DISCARD THE LESS USED FEATURES GAIN COVER FREQUENCY* Todos los métodos basados en árboles se basan en partir el subespacio de datos para encontrar subespacios más “puros”. De ahí nace “Gain” (cada algoritmo lo llama de una manera), representa la reducción de la entropía o la ganancia de información generación de subespacios más seguros de la clasificación Cover representa el numero relativo de observaciones relacionadas con esa feature Si tienes 100 observaciones, 4 feats y 3 arboles, y la feature 1 se ha usado para decidir los nodos hoja para 10, 5 y 2 observaciones en los arboles 1, 2 y 3 respectivamente, el cover será = 17. Frequency es la cantidad de veces que la feature se usa. No todos los algoritmos ofrecen esta
29
Recursive Feature Elimination
Different combinations of features are tried iteratively and performance data is gathered Requires an estimator (model)
30
DEMO A simpler life
31
How did we get here?
32
How did we get here? Churn is a business problem Business is key If our model is ONLY precise, is not enough
33
Why do we need to interpret?
To understand the results we are receiving from our models Debug and improve models Avoid bias Prescriptive analytics
34
What can we see? Returned values Measures
Regression Classification Measures Can we rely ONLY in measures?
35
Clever Hans
36
Partial dependency plots
37
DEMO Show me the model!
38
QUESTIONS?
39
THANK YOU!
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.