Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porSergio Cornejo Modificado hace 10 años
1
PROGRAMACION DE ESTRUCTURAS DE DATOS IV. MÉTODOS DE ORDENAMIENTO.
UNIVERSIDAD LATINA PROGRAMACION DE ESTRUCTURAS DE DATOS IV. MÉTODOS DE ORDENAMIENTO. EI, Profesor Ramón Castro Liceaga
2
(mayor -> menor o menor -> mayor)
QUE SON ORDENAMIENTOS DE DATOS ? SORT / ORDENACION.- Es reagrupar un grupo de datos en una secuencia especifica de orden (mayor -> menor o menor -> mayor) EI, Profesor Ramón Castro Liceaga
3
EI, Profesor Ramón Castro Liceaga
LA ORDENACION DE ELEMENTOS PUEDE SER: Ordenación Interna.- En memoria principal (arrays, listas). Ordenación Externa.- En memoria secundaria. (dispositivos de almacenamiento externo.- archivos y Bases de datos). EI, Profesor Ramón Castro Liceaga
4
EI, Profesor Ramón Castro Liceaga
TIPOS DE ORDENACION Los mas usuales son: POR INTERCAMBIO (Compara e intercambia elementos.- Burbuja) POR SELECCIÓN (Selecciona el mas pequeño y lo intercambia) POR INSERSION (Inserta los elementos en una sublista ordenada) METODO SHELL (Es una insersión mejorada) ORDENACION RAPIDA (Quick Sort.- divide una lista en dos partes) EI, Profesor Ramón Castro Liceaga
5
EI, Profesor Ramón Castro Liceaga
ALGORITMO DE EJEMPLO DE UN ORDENAMIENTO PROBLEMA: En una Empresa el área de Recursos Humanos requiere ordenar 3 números de empleados obteniendo la siguiente salida. EI, Profesor Ramón Castro Liceaga
6
EI, Profesor Ramón Castro Liceaga
POR INTERCAMBIO (Burbuja o bubble sort ) El bubble sort, también conocido como ordenamiento burbuja, funciona de la siguiente manera: Se va comparando cada elemento del arreglo con el siguiente; si un elemento es mayor que el que le sigue, entonces se intercambian; esto producirá que en el arreglo quede como su último elemento, el más grande. Este proceso deberá repetirse recorriendo todo el arreglo hasta que no ocurra ningún intercambio. Los elementos que van quedando ordenados ya no se comparan. "Baja el más pesado". EI, Profesor Ramón Castro Liceaga
7
EI, Profesor Ramón Castro Liceaga
EJEMPLO: Ordenamiento por Burbuja o bubble sort Consiste en comparar pares de elementos adyacentes e intercambiarlos entre sí hasta que estén todos ordenados. Sea un array de 6 números de empleados: {40,21,4,9,10,35}: Primera pasada: {21,40,4,9,10,35} <-- Se cambia el 21 por el 40. {21,4,40,9,10,35} <-- Se cambia el 40 por el 4. {21,4,9,40,10,35} <-- Se cambia el 9 por el 40. {21,4,9,10,40,35} <-- Se cambia el 40 por el 10. {21,4,9,10,35,40} <-- Se cambia el 35 por el 40. Segunda pasada: {4,21,9,10,35,40} <-- Se cambia el 21 por el 4. {4,9,21,10,35,40} <-- Se cambia el 9 por el 21. {4,9,10,21,35,40} <-- Se cambia el 21 por el 10. Ya están ordenados, pero para comprobarlo habría que acabar esta segunda comprobación y hacer una tercera. EI, Profesor Ramón Castro Liceaga
8
Prototipo de función.- Es la declaración de la función en el código
Que son las funciones ? Funciones.- Son bloques de código utilizados para dividir un programa en partes mas pequeñas Prototipo de función.- Es la declaración de la función en el código Variables: Gobales.- Nivel programa locales.- Nivel funcion
9
EI, Profesor Ramón Castro Liceaga
// Definimos una función donde A=arreglo y N=tamaño int bubblesort(int A[],int N){ int i,j,AUX; for(i=2;i<=N;i++){ //siguiente for(j=N;j>=i;j--){ //anterior if(A[j-1]>A[j]){ //si i > d intercambio AUX=A[j-1]; //guardamos en AUX A[j-1]=A[j]; //pasamos d a i A[j]=AUX; //copiamos AUX en d } return 1; EI, Profesor Ramón Castro Liceaga
10
EI, Profesor Ramón Castro Liceaga
Practica: Hacer un programa con Arreglos que ordene por el método de la burbuja Bubblesort en forma ascendente un vector de 10 números de empleados de una empresa. Códificación : main() { int A[10]; llenavector(A,10); // es uma función printf("ORDENAMIENTO POR BURBUJA \n"); printf("Numeros a ordenar: \n"); salida(A,10); // es uma función printf("\n\nNumeros ordenados: \n"); bubblesort(A,10); // es uma función getch(); } Pseudocódigo: 1.- Inicio 2.- Definir un vector de 10 números 3.- Llenar el vector con los números 4.- Mostrar la salida de los números capturados en desorden 5.- Ordenar el vector por el método bubblesort 6.- Mostrar la salida con los números ordenados del vector EI, Profesor Ramón Castro Liceaga
11
EI, Profesor Ramón Castro Liceaga
Función que llena el vector con los números int llenavector(int A[],int N){ int c; int x; cout<<"Ingrese 10 numeros de empleados:"<<endl; for(c=1;c<=N;c++){ cin>>x; // lee x numero A[c]=x; // lo graba en el vector } return 1; EI, Profesor Ramón Castro Liceaga
12
EI, Profesor Ramón Castro Liceaga
Ordenar el vector por el método bubblesort int bubblesort(int A[],int N){ int i,j,AUX; for(i=2;i<=N;i++){ for(j=N;j>=i;j--){ if(A[j-1]>A[j]){ AUX=A[j-1]; //Intercambio A[j-1]=A[j]; A[j]=AUX; } return 1; EI, Profesor Ramón Castro Liceaga
13
EI, Profesor Ramón Castro Liceaga
Muestra la salida de los números en el arreglo. int salida(int A[],int N){ int c; for(c=1;c<=N;c++){ printf("%d, ",A[c]); // muestra el vector } return 1; // Nota: este mismo procedimiento fue el que se utilizó para mostrar los datos desordenados.(solo se escribe una vez) EI, Profesor Ramón Castro Liceaga
14
Practica # S01: Construir el programa con Arreglos que ordene por el método de la burbuja Bubblesort en forma ascendente un vector de 10 números de empleados de una empresa. Librerias: #include <stdlib.h> #include <stdio.h> #include <iostream> #include <conio.h> using namespace std; EI, Profesor Ramón Castro Liceaga
15
EI, Profesor Ramón Castro Liceaga
TIPOS DE ORDENACION Los mas usuales son: POR INTERCAMBIO (Compara e intercambia elementos) POR INSERSION (Inserta los elementos en una sublista ordenada) POR SELECCIÓN (Selecciona el mas pequeño y lo intercambia) METODO SHELL (Es una insersión mejorada) ORDENACION RAPIDA (Quick Sort.- divide una lista en dos partes) CUALES SON LOS CRITERIOS DE SELECCIÓN DEL MÉTODO DE ORDENAMIENTO ANÁLISIS COMPARATIVO DE LAS COMPLEJIDADES DE LOS DISTINTOS MÉTODOS DE ORDENAMIENTO EI, Profesor Ramón Castro Liceaga
16
POR INSERSION El insertion sort es una manera muy natural de ordenar para un ser humano, y puede usarse fácilmente para ordenar un conjunto de cartas numeradas en forma arbitraria. Algoritmo: Consiste en tomar uno por uno los elementos de un arreglo y lo recorre hacia su posición con respecto a los anteriormente ordenados. Así empieza con el segundo elemento y lo ordena con respecto al primero. Luego sigue con el tercero y lo coloca en su posición ordenada con respecto a los dos anteriores, así sucesivamente hasta recorrer todas las posiciones del arreglo. Ejemplo:
17
EI, Profesor Ramón Castro Liceaga
El algoritmo en pseudocódigo algoritmo insertSort( A : lista de elementos ordenables ) para i=1 hasta longitud(A) hacer index=A[i] j=i-1 mientras j>=0 y A[j]>index hacer A[j+1] = A[j] j = j - 1 fin mientras A[j+1] = index fin para fin algoritmo EI, Profesor Ramón Castro Liceaga
18
EI, Profesor Ramón Castro Liceaga
Programa completo // insert-sort.cpp #include <stdio.h> #include <stdlib.h> main(){ int a[]={67,8,15,44,27,12,35}; int i,aux,k; for(i=1;i<7;i++){ aux=a[i]; k=i-1; while((k<i)&&(aux<a[k])){ a[k+1]=a[k]; k=k-1;} a[k+1]=aux;} for(i=0;i<7;i++){ printf("%i\n",a[i]);} system("pause"); } EI, Profesor Ramón Castro Liceaga
19
EI, Profesor Ramón Castro Liceaga
POR SELECCION Este algoritmo trabaja seleccionando el dato más pequeño a ser ordenado que aún esta en la lista, y luego haciendo un intercambio con el elemento en la siguiente posición. ejemplo, si tenemos el array {40,21,4,9,10,35}, los pasos a seguir son : {4,21,40,9,10,35} <-- Se coloca el 4, el más pequeño, en primera posición : se cambia el 4 por el 40. {4,9,40,21,10,35} <-- Se coloca el 9, en segunda posición: se cambia el 9 por el 21. {4,9,10,21,40,35} <-- Se coloca el 10, en tercera posición: se cambia el 10 por el 40. {4,9,10,21,40,35} <-- Se coloca el 21, en tercera posición: ya está colocado. {4,9,10,21,35,40} <-- Se coloca el 35, en tercera posición: se cambia el 35 por el 40. EI, Profesor Ramón Castro Liceaga
20
EI, Profesor Ramón Castro Liceaga
POR SELECCION Otro ejemplo del selection Sort. Para un arreglo de : 8, 5, 2, 6, 9, 3, 1, 4,0,7 EI, Profesor Ramón Castro Liceaga
21
Código de la función por selección.
void selectionSort(int numbers[], int array_size) { int i, j; int min, temp; for (i = 0; i < array_size-1; i++){ min = i; for (j = i+1; j < array_size; j++){ if (numbers[j] < numbers[min]){ min = j; temp = numbers[i]; numbers[i] = numbers[min]; numbers[min] = temp; }
22
EI, Profesor Ramón Castro Liceaga
POR METODO SHELL (Ordenamiento por bloques de datos) El algoritmo realiza multiples pases a través de la lista, y en cada pasada ordena un numero igual de items. El tamaño del set de datos (también llamado distancia o intervalo) a ser ordenado va creciendo a medida que el algoritmo recorre el array hasta que finalmente el set esta compuesto por todo el array en si mismo. Ejemplo EI, Profesor Ramón Castro Liceaga
23
EI, Profesor Ramón Castro Liceaga
POR METODO SHELL Por ejemplo, lo pasos para ordenar el array {40,21,4,9,10,35} mediante el método de Shell serían: Salto=3: Primera pasada: {9,21,4,40,10,35} <-- se intercambian el 40 y el 9. {9,10,4,40,21,35} <-- se intercambian el 21 y el 10. Salto=1: {9,4,10,40,21,35} <-- se intercambian el 10 y el 4. {9,4,10,21,40,35} <-- se intercambian el 40 y el 21. {9,4,10,21,35,40} <-- se intercambian el 35 y el 40. Segunda pasada: {4,9,10,21,35,40} <-- se intercambian el 4 y el 9. Con sólo 6 intercambios se ha ordenado el array, cuando por inserción se necesitaban muchos más. EI, Profesor Ramón Castro Liceaga
24
EI, Profesor Ramón Castro Liceaga
void shellSort(int numbers[], int array_size) { int i, j, increment, temp; increment = 3; while (increment > 0) for (i=0; i < array_size; i++) j = i; temp = numbers[i]; while ((j >= increment) && (numbers[j-increment] > temp)) numbers[j] = numbers[j - increment]; j = j - increment; } numbers[j] = temp; if (increment/2 != 0) increment = increment/2; else if (increment == 1) increment = 0; else increment = 1; EI, Profesor Ramón Castro Liceaga
25
#include<stdio.h> #include<conio.h>
//shelSort.cpp #include<stdio.h> #include<conio.h> #include<cstdlib> void shellsort(int a[],int n) { int j,i,k,m,mid; for(m = n/2;m>0;m/=2) for(j = m;j< n;j++) for(i=j-m;i>=0;i-=m) if(a[i+m]>=a[i]) break; else mid = a[i]; a[i] = a[i+m]; a[i+m] = mid; } //shelSort.cpp (continuacion) main() { int a[10],i,n; system("cls"); printf("Ingrese el numero de elementos\t: "); scanf("%d",&n); for(i=0;i< n;i++) printf("\nElement %d\t: ",i+1); scanf("%d",&a[i]); } printf("\nEn desorden : "); printf("%5d",a[i]); shellsort(a,n); printf("\nOrdenado : "); getch(); return 0;
26
EI, Profesor Ramón Castro Liceaga
ORDENACION RAPIDA (Quick Sort) algoritmo recursivo. El Quick sort es un algoritmo del estilo divide y venceras. Es bastante más rápido que el merge sort. El algoritmo de recursión consiste en una serie de cuatro pasos: 1. Si hay menos de un elemento a ser ordenado retorna inmediatamente (termina). 2. Tomar un elemento del vector que sirve como “muestra” 3. Dividir el array en dos partes, una con los elementos mayores y una con los elementos menores al muestra. 4. Repite recursivamente el algoritmo para las dos mitades del array original hasta que queda ordenado. EI, Profesor Ramón Castro Liceaga
27
EI, Profesor Ramón Castro Liceaga
Quicksort en acción sobre una lista de números aleatorios. Las líneas horizontales son valores pivote EI, Profesor Ramón Castro Liceaga
28
EI, Profesor Ramón Castro Liceaga
Parámetros: Se debe llamar a la función Quicksort desde donde quiera ejecutarse Ésta llamará a colocar pivote para encontrar el valor del mismo Se ejecutará el algoritmo Quicksort de forma recursiva a ambos lados del pivote int colocar(int *v, int b, int t) { int i; int pivote, valor_pivote; int temp; pivote = b; valor_pivote = v[pivote]; for (i=b+1; i<=t; i++){ if (v[i] < valor_pivote){ pivote++; temp=v[i]; v[i]=v[pivote]; v[pivote]=temp; } temp=v[b]; v[b]=v[pivote]; return pivote; void Quicksort(int* v, int b, int t) { int pivote; if(b < t){ pivote=colocar(v, b, t); Quicksort(v, b, pivote-1); Quicksort(v, pivote+1, t); } EI, Profesor Ramón Castro Liceaga
29
EI, Profesor Ramón Castro Liceaga
Eficiencia en tiempo de ejecución. Una medida de eficiencia es: Contar el # de comparaciones (C) Contar el # de movimientos de elementos (M) Estos están en función de el #(n) de elementos a ser ordenados. EI, Profesor Ramón Castro Liceaga
30
EI, Profesor Ramón Castro Liceaga
Algoritmos de ordenamiento: Internos: Inserción directa. Inserción binaria. Selección directa. Burbuja. Shake. Intercambio directo. Shell. Inserción disminución incremental. Heap. Tournament. Ordenamiento de árbol. Quick sort. Sort particionado. Merge sort. Radix sort. Cálculo de dirección. Algoritmos de ordenamiento: Externos: 1.Straight merging. 2.Natural merging. 3.Balanced multiway merging. 4.Polyphase sort. 5.Distribution of initial runs. EI, Profesor Ramón Castro Liceaga
31
EI, Profesor Ramón Castro Liceaga
Criterios de selección del método de ordenamiento EI, Profesor Ramón Castro Liceaga
32
EI, Profesor Ramón Castro Liceaga
Actividad adicional: Hacer un programa en C, C++ que muestre un menú que integre los métodos de ordenamientos anteriormente vistos. Fuentes: Ejemplos de algoritmos de ordenamiento y código Ejemplos animados. EI, Profesor Ramón Castro Liceaga
33
EI, Profesor Ramón Castro Liceaga
GRACIAS POR TU ATENCION … EI, Profesor Ramón Castro Liceaga
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.