La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

4º Curso Titulación Ingeniero Químico.

Presentaciones similares


Presentación del tema: "4º Curso Titulación Ingeniero Químico."— Transcripción de la presentación:

1 4º Curso Titulación Ingeniero Químico.
Tema 4. Viscoelasticidad no lineal. Asignatura: Reología. 4º Curso Titulación Ingeniero Químico.

2 I. ECUACIONES CONSTITUTIVAS. 1. Introducción. 2. Fluidos viscosos.
3. Viscoelasticidad lineal. 4. Viscoelasticidad no lineal. (4 ses.) 1. FENÓMENOS NO LINEALES. 1.1. Pseudoplasticidad en cizalla simple. 1.2. Dilatancia extensional. 1.3. Presencia de esfuerzos normales. 2. ECUACIONES CONSTITUTIVAS. 2.1. Ecuaciones diferenciales. Ecuación de Jeffreys. Ecuación White-Metzner. Ecuación de Olroyd. 2.2. Ecuaciones integrales. Ecuación de Lodge. Ecuación KBZ. 3. APLICACIÓN DE LAS ECUACIONES CONSTITUTIVAS AL FLUJO DE POLÍMEROS: ESTUDIO DEL HILADO DE FIBRAS MEDIANTE LA ECUACIÓN DE WHITE Y METZNER.

3 Tema 4. VISCOELASTICIDAD NO LINEAL: Conceptos necesarios
1. Tensor de tensiones. Nomenclatura. - Cálculo de la tensión sobre una superficie. - Invariante de un tensor. Velocidad de deformación. Fenómenos Transporte (2º Curso) Tema 1. Tema 1. 2. Tensores de Finger y Cauchy. Tema 1. 3. Operaciones con vectores y tensores: - Producto escalar entre tensores. - Producto diádico entre vectores. Fenómenos Transporte (2º Curso) 4. Ecuaciones de continuidad y movimiento. Fenómenos Transporte (2º Curso)

4 INTRODUCCIÓN

5 Fluido Viscoso-Ley de Newton Fluido Viscoso-Ley de Newton
Extremos clásicos Introducción Sólido Elástico -Ley de Hooke Sólido Elástico -Ley de Hooke Fluido Viscoso-Ley de Newton Fluido Viscoso-Ley de Newton t t t Material Viscoelástico

6 Número de Debora [De] = / 
Viscoelásticidad: El número de Debora Introducción Número de Debora [De] = /  Tiempo de relajación De  De 0

7 Valores de algunos tiempos de relajación característicos
Introducción 30 s 1 s 6 s 2 s Uso de Polímeros en Europa durante 1999 (Asociación Europea de Fabricantes de Polímeros)

8 Material Viscoelástico
Introducción Fluido Viscoso Material Viscoelástico Sólido elástico De Deformación s g

9 Material Viscoelástico
Introducción Fluido Viscoso Material Viscoelástico Sólido elástico De Deformación Viscoelástico no lineal Viscoelástico lineal

10 Viscoelasticidad lineal: Régimen de aplicación
Introducción AR 1000

11 Viscoelasticidad no lineal
Viscoelasticidad no lineal. Operaciones unitarias procesado de polímeros. Introducción

12 1. FENÓMENOS NO LINEALES

13 1.1. Pseudoplasticidad en cizalla simple.
Fenómenos no lineales LDPE,170ºC

14 1.2. Dilatancia extensional.
Fenómenos no lineales LDPE,170ºC

15 1.3. Esfuerzos normales. Fenómenos no lineales y x z

16 Diferencias esfuerzos normales: Principal
Fenómenos no lineales Diferencias esfuerzos normales: Principal Secundaria

17 CONSECUENCIAS OBSERVABLES
Consecuencias observables de los esfuerzos normales 1.3. Esfuerzos normales CONSECUENCIAS OBSERVABLES Hinchamiento post-extrusión Fluido inelástico Fluido viscoelástico

18 Inestabilidades del flujo
Consecuencias observables de los esfuerzos normales 1.3. Esfuerzos normales Inestabilidades del flujo

19 2. ECUACIONES CONSTITUTIVAS PARA LA VISCOELASTICIDAD NO LINEAL

20 Reflejar la viscoelasticidad del material.
Ecuaciones constitutivas de viscoelasticidad no lineal 2.Ecuaciones constitutivas Reflejar la viscoelasticidad del material. Válida para deformaciones finitas. Predecir fenómenos no lineales.

21 Elementos de fluido móviles y deformables
2.Ecuaciones constitutivas x1 x2 x1 x2 t Dx1 Dx2 Dx’1 Dx’2

22 Viscoelasticidad lineal
Adaptación de las ecuaciones de viscoelasticidad lineal 2.Ecuaciones constitutivas Viscoelasticidad lineal Viscoelasticidad no lineal

23 Ecuación de White-Metzner
2.1 Ecuaciones constitutivas diferenciales Ecuación de White-Metzner

24 3. APLICACIÓN DE LAS ECUACIONES CONSTITUTIVAS

25 3. Utilización de Las ecuaciones constitutivas.
Proceso de hilado de fibras

26 Aplicaciones de las fibras
3. Empleo de las ecuaciones constitutivas

27 Factores que influyen en la aplicabilidad de las fibras
3.Utilización de las ecuaciones constitutivas APLICABILIDAD DE UNA FIBRA Propiedades mecánicas y propiedades ópticas Cristales tipo esferulita Cristales tipo lamela Radio Orientación molecular Cristalinidad Polímero

28 Factores que influyen en la aplicabilidad de las fibras
3.Utilización de las ecuaciones constitutivas APLICABILIDAD DE UNA FIBRA Propiedades mecánicas y propiedades ópticas Radio Orientación molecular Cristalinidad Polímero Estado de tensiones Perfil de velocidades temperaturas Velocidad de extrusión Velocidad de bobinado Tensión de bobinado Distancia entre boquilla y bobina Temperatura de extrusión Sistema de enfriamiento Condiciones de procesado

29 Factores que influyen en la aplicabilidad de las fibras
3.Utilización de las ecuaciones constitutivas Estado de tensiones Perfil de velocidades temperaturas Balances de cantidad de movimiento Balances de materia Balances de energía

30 Factores que influyen en la aplicabilidad de las fibras
3.Utilización de las ecuaciones constitutivas Perfil de temperaturas Estado de tensiones Perfil de velocidades Balances de cantidad de movimiento Balances de materia Balances de energía

31 Esquema de los cálculos
3.Utilización de las ecuaciones constitutivas Balances de materia (Ec. continuidad) Balances de cantidad de movimiento (Ecs. movimiento) Estado de tensiones Perfil de velocidades

32 Esquema de los cálculos
3.Utilización de las ecuaciones constitutivas Estado de tensiones Perfil de velocidades Balances de cantidad de movimiento (Ecs. movimiento) Balances de materia (Ec. continuidad) Ec. reológica de estado

33 Esquema de los cálculos
3.Utilización de las ecuaciones constitutivas Estado de tensiones Perfil de velocidades Balances de cantidad de movimiento (Ecs. movimiento) Balances de materia (Ec. continuidad) Ec. reológica de estado Condiciones de contorno

34 Esquema de los cálculos
3.Utilización de las ecuaciones constitutivas Condiciones de contorno Balances de materia (Ec. continuidad) Balances de cantidad de movimiento (Ecs. movimiento) Ec. reológica de estado 1. Fluido Inelástico. 2. Material viscoelástico. Estado de tensiones Perfil de velocidades

35 Factores que influyen en la aplicabilidad de las fibras
3.Utilización de las ecuaciones constitutivas Bird y col. (1987) z=0 v0 z=L vL F DOW STYRON 666 n=0.33 =DR=5.85 vL v0 N= F/(pRo) 2 h (v0/L) =0.08 t0 =

36 R1 R2 Vector velocidad: Tensor de tensiones: Descripción r q z
3.Utilización de las ecuaciones constitutivas Vector velocidad: R1 R2 z r q Tensor de tensiones:

37 Esquema de los cálculos
3.Utilización de las ecuaciones constitutivas Condiciones de contorno Balances de materia (Ec. continuidad) Balances de cantidad de movimiento (Ecs. movimiento) Ec. reológica de estado Estado de tensiones Perfil de velocidades

38 Condiciones de contorno
3.Utilización de las ecuaciones constitutivas z=0 z=L C.C. 1. Velocidad y tensiones dadas en z=0: C.C.1-A C.C.1-B C.C. 2. Velocidad dada en z=L I. Normal a cualquier trayectoria (dr 0 dz). C.C. 3. No hay flujo de fluido a través de la superficie r =R II. Vector unitario. r=R

39 Condiciones de contorno
3.Utilización de las ecuaciones constitutivas z=0 z=L C.C. 1. Velocidad y tensiones dadas en z=0: C.C. 2. Velocidad dada en z=L C.C. 3. No hay flujo de fluido a través de la superficie r =R

40 Condiciones de contorno
3.Utilización de las ecuaciones constitutivas z=0 z=L C.C. 1. Velocidad y tensiones dadas en z=0: C.C. 2. Velocidad dada en z=L C.C. 3. No hay flujo de fluido a través de la superficie r =R

41 Condiciones de contorno
3.Utilización de las ecuaciones constitutivas z=0 z=L C.C. 1. Velocidad y tensiones dadas en z=0: C.C. 2. Velocidad dada en z=L C.C. 3. No hay flujo de fluido a través de la superficie r =R C.C.4. La resultante de todas las fuerzas que actúan sobre dicha superficie es nula:

42 Condiciones de contorno
3.Utilización de las ecuaciones constitutivas z=0 z=L C.C. 1. Velocidad y tensiones dadas en z=0: C.C. 2. Velocidad dada en z=L C.C. 3. No hay flujo de fluido a través de la superficie r =R C.C.4. La resultante de todas las fuerzas que actúan sobre dicha superficie es nula:

43 Esquema de los cálculos
3.Utilización de las ecuaciones constitutivas Condiciones de contorno Balances de materia (Ec. continuidad) Balances de cantidad de movimiento (Ecs. movimiento) Ec. reológica de estado Estado de tensiones Perfil de velocidades

44 Ecuación de continuidad
3.Utilización de las ecuaciones constitutivas

45 Ecuación de continuidad
3.Utilización de las ecuaciones constitutivas +C.C.3 r=R

46 Esquema de los cálculos
3.Utilización de las ecuaciones constitutivas Condiciones de contorno Balances de materia (Ec. continuidad) Balances de cantidad de movimiento (Ecs. movimiento) Ec. reológica de estado Estado de tensiones Perfil de velocidades

47 Ecuación de movimiento
3.Utilización de las ecuaciones constitutivas 2p r dr R

48 Ecuación de movimiento
3.Utilización de las ecuaciones constitutivas 2p r dr R C.C.4 Ecuación general del hilado de fibras

49 Transformación de la ecuación del hilado de fibras
3.Utilización de las ecuaciones constitutivas Ecuación general del hilado de fibras Ec. Continuidad Ecuación del hilado de fibras poliméricas

50 Transformación de la ecuación del hilado de fibras
3.Utilización de las ecuaciones constitutivas

51 Esquema de los cálculos
3.Utilización de las ecuaciones constitutivas Condiciones de contorno Balances de materia (Ec. continuidad) Balances de cantidad de movimiento (Ecs. movimiento) Ec. reológica de estado 1. Fluido inelástico. 2. Material viscoelástico. Estado de tensiones Perfil de velocidades

52 Esquema de los cálculos
3.Utilización de las ecuaciones constitutivas Condiciones de contorno Balances de materia (Ec. continuidad) Balances de cantidad de movimiento (Ecs. movimiento) Ec. reológica de estado 1. Fluido inelástico. 2. Material viscoelástico. Estado de tensiones Perfil de velocidades

53 Ecuación constitutiva: Ley de las potencias
3.Utilización de las ecuaciones constitutivas

54 Ecuación constitutiva: Ley de las potencias
3.Utilización de las ecuaciones constitutivas N= F/(pRo) 2 h (v0/L) t0 =

55 Ecuación constitutiva: Ley de las potencias
3.Utilización de las ecuaciones constitutivas Ncalc=0.42 Nexp=0.08 Inelástico Experimental

56 Esquema de los cálculos
3.Utilización de las ecuaciones constitutivas Condiciones de contorno Balances de materia (Ec. continuidad) Balances de cantidad de movimiento (Ecs. movimiento) Ec. reológica de estado 1. Fluido inelástico. 2. Material viscoelástico. Estado de tensiones Perfil de velocidades

57 Ecuación constitutiva: Ec. White-Metzner
3.Utilización de las ecuaciones constitutivas

58 Ecuación constitutiva: Ec. White-Metzner
3.Utilización de las ecuaciones constitutivas

59 Ecuación constitutiva: Ec. White-Metzner
3.Utilización de las ecuaciones constitutivas N= F/(pRo) 2 h (v0/L) t0 =

60 Ecuación constitutiva: Ec. White-Metzner
3.Utilización de las ecuaciones constitutivas

61 Caso clásicos extremos
3.Utilización de las ecuaciones constitutivas Fluido Inelástico (De=0) Material elástico (N/De=0)

62 Caso general: Material viscoelástico
3.Utilización de las ecuaciones constitutivas C.C.1 C.C.3

63 Caso general: Material viscoelástico
3.Utilización de las ecuaciones constitutivas

64 Caso general: Material viscoelástico
3.Utilización de las ecuaciones constitutivas No Si

65 Caso general: Material viscoelástico
3.Utilización de las ecuaciones constitutivas Ncalc=0.42 Ncalc=0.23 Nexp=0.08 De=0.30 Inelástico Experimental Viscoelástico De=0.30 De=0.52 Ncalc=0.42 Ncalc=0.09 Nexp=0.08 Inelástico Experimental Viscoelástico t= nº datos experimentales

66 F (u.F.) Experimental Inelástico 12.5 Viscoelástico (De=0.30)
Conclusiones 3.Utilización de las ecuaciones constitutivas N F/(pRo) 2 t0 = F N t0 = p(Ro) 2 B.C. : =1 F t0 p (Ro) 2 F (u.F.) Experimental Inelástico Viscoelástico (De=0.30) Viscoelástico (De=0.52) 12.5 2.3 4.3 12.0

67 Conclusiones Inelástico Experimental Viscoelástico (De=0.30)
3.Utilización de las ecuaciones constitutivas Inelástico Experimental Viscoelástico (De=0.30) Viscoelástico (De=0.52)

68 PROGRAMAS DE SIMULACIÓN (POLYFLOW ®)
Conclusiones 3.Utilización de las ecuaciones constitutivas PROGRAMAS DE SIMULACIÓN (POLYFLOW ®)


Descargar ppt "4º Curso Titulación Ingeniero Químico."

Presentaciones similares


Anuncios Google