La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

ÁRBOLES BINARIOS DE BUSQUEDA

Presentaciones similares


Presentación del tema: "ÁRBOLES BINARIOS DE BUSQUEDA"— Transcripción de la presentación:

1 ÁRBOLES BINARIOS DE BUSQUEDA
El árbol binario de búsqueda es una estructura sobre la cual se pueden realizar eficientemente las operaciones de búsqueda, inserción y eliminación. En las listas, las operaciones de inserción y eliminación se pueden llevar a cabo con facilidad, sin embargo la búsqueda es una operación bastante costosa que incluso nos puede llevar a recorrer todos los elementos de ella para localizar uno en particular.

2 Definición de Árbol binario de Búsqueda
Para todo nodo T del árbol debe cumplirse que todos los valores de los nodos del subárbol izquierdo de T deben ser menores o iguales al valor del nodo T. De forma similar, todos los valores de los nodos del subárbol derecho de T deben ser mayores o iguales al valor del nodo T. Es aquel en el que el hijo de la izquierda (si existe) de cualquier nodo contiene un valor más pequeño o igual que el nodo padre, y el hijo de la derecha (si existe) contiene un valor más grande o igual que el nodo padre.

3 En la siguiente figura tenemos un ejemplo de árbol binario de búsqueda.

4 Observe el lector que si en dicho árbol se sustituye el valor 140 del nodo por 160, 99 por 105 y 43 por 55; el árbol continúa siendo un árbol binario de búsqueda. Ahora bien, si en dicho árbol se remplaza el valor 87 del nodo por 125, entonces el árbol deja de ser un árbol binario de búsqueda puesto que viola el principio que dice que: “Todos los nodos del subárbol izquierdo del nodo T deben ser menores o iguales al nodo T” (en este caso 125 no es menor a 120).

5 También es posible observar que si se efectúa un recorrido inorden sobre un árbol de búsqueda se obtendrá una clasificación de los nodos en forma ascendente. El recorrido inorden del árbol de la figura anterior produce el siguiente resultado:

6 Búsqueda en un Árbol binario de búsqueda
BÚSQUEDA (NODO, INFOR ) 1. Si INFOR < NODO^.INFO entonces 1.1 Si NODO^.IZQ = NIL Escribir “El ncdo no se encuentra en el árbol” si no Regresar a BÚSQUEDA con N0DO^.IZQ e INFOR {Llamada recursiva} 1.2 { Fin del condicional del paso 1.1} 1.3 Si INFOR> NODO^.INFO 1.3.1 Si NODO^.DER = NIL Escribir “El nodo no se encuentra en el árbol” Regresar a BUSQUEDA con NODO^.DER e INFOR { Llamada recursiva) 1.3.2 (Fin del condicional del paso 1.3.1 Escribir “El nodo se encuentra en el árbol” 1.4 { Fin del condicional del paso 1.3} 2. { Fin del condicional del paso 1}

7 BUSQUEDA1 (NODO, INFOR) 1. Si NODO ≠ NIL entonces 1.1 Si INFOR < NODO^.INFO Regresa a BÚSQUEDA1 con NODO^.IZQ e INFOR {Llamada recursiva} si no 1.1.1 Si INFOR > NODO^.INFO Regresa a BÚSQUEDA1 con NODO^.DER e INFOR {Llamada recursiva} Escribir “El nodo se encuentra en el árbol” 1.1.2 {Fin del condicional del paso 1.1.1} 1.2 {Fin del condicional del paso 1.1} Escribir “El nodo no se encuentra en el árbol” 2. {Fin del condicional del paso 1}

8 INSERCIÓN EN UN ÁRBOL BINARIO DE BÚSQUEDA
La inserción es una operación que se puede realizar eficientemente en un árbol binario de búsqueda. La estructura crece conforme se inserten elementos al árbol. Los pasos que deben realizarse para insertar un elemento a un árbol binario de búsqueda son los siguientes: Debe compararse la clave a insertar con la raíz del árbol. Si es mayor, debe avanzarse hacia el subárbol derecho. Si es menor, debe avanzarse hacia el subárbol izquierdo. Repetir sucesivamente el paso 1 hasta que se cumpla alguna de las siguientes condiciones: 2.1 LI subárbol derecho es igual a vacío, o el subárbol izquierdo es igual a vació; en cuyo caso se procederá a insertar el elemento en el lugar que le corresponde. 2.2 La clave que quiere insertarse es igual a la raíz del árbol; en cuyo caso no se realiza la inserción.

9 Ejemplo Supóngase que quieren insertarse las siguientes claves en un árbol binario de búsqueda que se encuentre vacío: claves: Los resultados parciales que ilustran cómo funciona el procedimiento se presentan en las figuras que siguen:

10 Inserción : clave 120 clave 87 clave 43 clave 65

11 Nota: Las líneas gruesas indican el elemento que acaba de insertarse.
Inserción: Clave Clave 56 Nota: Las líneas gruesas indican el elemento que acaba de insertarse.

12 Inserción en un Árbol Binario de Búsqueda
INSERCIÓN (NODO, INFOR) 1. Si INFOR < NODO^.INFO entonces 1.1 Si NODO^.IZQ = NIL CREA (OTRO) {Crear un nuevo nodo} Hacer OTRO^.IZQNIL, OTRO^.DERNIL, OTRO^.INFOINFOR y NODO^.IZQOTRO si no Regresar a INSERCIÓN con NODO^.IZQ e INFOR {Llamada recursiva} 1.2 {Fin del condicional del paso 1.1} 1.3 Si INFOR > NODO^.INFO 1.3.1 Si NODO^.DER =NIL NODO^.DEROTRO Regresar a INSERCIÓN con NODO^.DER e INFOR {Llamada recusiva} 1.3.2 {Fin del condicional del paso 1.3.1} Escribir “El nodo ya se encuentran en el árbol” 1.4 {Fin del condicional del paso 1.3} 2. {Fin del condicional del paso 1}

13 INSERCIÓN1 (NODO INFOR)
1. Si NODO ≠ NIL entonces 1.1 Si INFOR < NODO^.INFO Regresar a INSERCIÓN1 con NODO^.IZQ e INFOR {Llamada recursiva} si no 1.1.1 Si INFOR > NODO^.INFO Regresar a INSERCIÓN1 con NODO^.DER e INFOR {Llamada recursiva} Escribir “El nodo ya se encuentra en el árbol” 1.1.2 {Fin del condicional del paso 1,1.1 } 1.2 { Fin del condicional del paso 1.1} CREA (OTRO) {Crear un nuevo nodo} Hacer OTRO^.IZQNIL, OTRO^.DERNIL, OTRO^.INFOINFOR y NODOOTRO 2. { Fin del condicional del paso 1}

14 BORRADO EN UN ÁRBOL BINARIO DE BÚSQUEDA
La operación (le borrado es un poco más complicada que la de inserción. Ésta consiste en eliminar un nudo dci árbol sin violar los principios que definen justamente un árbol binario de búsqueda. Se debe distinguir los siguientes casos: Si el elemento a borrar es terminal u hoja, simplemente se suprime. Si el elemento a borrar tiene un solo descendiente, entonces tiene que sustituirse por ese descendiente. Si el elemento a borrar tiene los dos descendientes, entonces se tiene que sustituir por el nodo que se encuentra más a la izquierda en el subárbol derecho o por el nodo que se encuentra más a la derecha en el subárbol izquierdo. Además, debemos recordar que antes de eliminar un nodo, debe localizársele en el árbol. Para esto, se utilizará el algoritmo de búsqueda.

15 Ejemplo: Supóngase que se desea eliminar las siguientes claves del árbol binario de búsqueda de la figura anterior: claves: – 56 Los resultados parciales que ilustran cómo funciona el procedimiento se presentan en las figuras que siguen:

16 Nota: Las flechas indican el elemento que quiere eliminarse.
ELIMINACIÓN: CLAVE 22 ELIMINACIÓN: CLAVE 99 a) b) Nota: Las flechas indican el elemento que quiere eliminarse. Eliminación en un árbol binario de búsqueda. a) y f) corresponden al primer caso

17 g) Estado sinal del árbol.
ELIMINACIÓN: CLAVE 87 d) c) Eliminación en un árbol binario de búsqueda. b) y c) corresponden al segundo caso; c) y d) corresponden al tercer caso. g) Estado sinal del árbol.

18 ELIMINACIÓN: CLAVE 140 ELIMINACIÓN: CLAVE f) g) e)

19 Eliminación en un Árbol Binario de Búsqueda
ELIMINACIÓN (NODO, INFOR) 1. Si NODO ≠ NIL entonces 1.1 Si INFOR < NODO^.INFO Regresar a ELIMINACIÓN con NODO^.IZQ e INFOR {Llamada recursiva} si no 1.1.1 Si INFOR > NODO^.INFO Regresar a ELIMINACION con NODO^.DER e INFOR {Llamada recursiva } Hacer OTRONODO 1.1.1.A Si OTRO^.DER = NIL Hacer NODOOTRO^.IZQ 1.1.1.B SÍ OTRO^.IZQ = NIL Hacer NODOOTRO^.DER Hacer AUXOTRO^.IZQ y AUX1AUX 1.1.1.C Repetir mientras AUX^.DER ≠ NIL Hacer AUX1AUX y AUXAUX^.DER 1.1.2.C {Fin del ciclo del paso C} Hacer OTRO^.INFO AUX^.INFO, OTROAUX y AUX1^.DERAUX^.IZQ 1.1.2.B {Fin del condicional del paso B} 1.1.2.A {Fin del condicional del paso A} 1.1.2 {Fin del condicional del paso 1.1.1} 1.2 {Fin del condicional del paso 1.1} QUITA (OTRO) {Libera la memoria del nodo) Escribir “El nodo no se encuentra en el árbol” 2. {Fin del condicional del paso 1}


Descargar ppt "ÁRBOLES BINARIOS DE BUSQUEDA"

Presentaciones similares


Anuncios Google