Descargar la presentación
La descarga está en progreso. Por favor, espere
1
Aplicaciones: Defectos en semiconductores
Sustitución catiónica en polvos nanocristalinos
4
t(ns)
7
Aplicaciones: Volúmenes libres en polímeros
Polivinilsiloxanos (PVS) POSITRONFIT CONTIN Alessandrini, SLAP 2004, Spain
8
Aplicaciones: Volúmenes libres en polímeros
Polímeros de Poli(Acrilato de Etilo) Se determinó el tamaño de los huecos: R~2.5 Å M.A.Hernández-Fenollosa, APHYS 2003, Spain
9
Aplicaciones: Volúmenes libres en polímeros
Estructuras CB[n] to-Ps en función del tamaño del hueco en las CB[n] Variación de tave con el llenado de las cavidades para CB[7]
10
Application of positron annihilation techniques
for semiconductor studies Techniques: - Doppler broadening (depth profile) - lifetime (in bulk) - coincidence (in bulk) Samples: - He-implanted silicon - Czochralski-grown silicon low-k materials - SiO2 and GeO2 conducting glasses
11
Positron identity e+ is antiparticle of e- : Ps is light H :
mass keV/c2 spin ½ opposite Q opposite μ stable in vacuum (>2x1021y) Ps is light H : Energy E= ½ Ry p-Ps: τ=125 ns, 2γ o-Ps: τ=142 ns, 3γ
12
Positron history History of “slow” positrons
1930 – e+ postulated by Dirac 1932 – discovered in cosmic rays by Anderson “out of 1300 photographs of cosmic tracks, 15 were od positive particles which could not have a mass greater as that of the proton” 1950 – Madanski-Rasetti try to moderate 1951 – evidence of Ps atom (Deutsch) 1958 – moderated e+ , ε=3x10-8 (Cherry) 1979 – single crystal moderator (Mills) 1980 – brightness enhancement (Mills)
13
Positron slowing down
14
Positron sources Moderators Radioactive nuclides W (100): ε= 4x10-4
Solid Ne: ε=1% ?
15
Positrons in Solid State Physics
16
Trento Positron Annihilation Set-up
17
Trento-München Positron Microscope
E=500 eV – 25 keV spot = 2 μm
18
Positron walking
19
Positron in a crystal
20
Espectroscopía de aniquilación de positrones
21
Positron lifetime technique
τdefect > τbulk
22
Doppler broadening technique
ptot=pe+pp ΔE = cpz / 2 S=(E0±0.85keV)/(E0±4.25keV)
23
Doppler-broadening: normalization
24
He bubbles in Si He – implantation n=0.5x1016cm2 NO! n=2x1016cm2 YES!
25
He bubbles in Si
26
He bubbles in Si
27
He bubbles in Si quantization of S - values
28
Doppler-coincidence technique
29
Doppler-coincidence spectra
30
D-C - chemical sensitivity
31
D-C - chemical sensitivity
32
Si – Czochralski grown cO≈ 1018 cm-3 cB≈ 1016 cm-3
33
Oxygen in Cz-grown silicon
thermal donors precipitates new donors “as grown”: annealed at 450°C
35
Oxygen in Cz-grown silicon
36
Oxygen in Cz-grown silicon
37
Oxygen in Cz-grown silicon
38
Conducting glasses (SiO2+Bi2O3)
AFM picture of Si-Pb glass; a) freshly broken; b) Annealed at 580ºC for 21h
39
Conducting glasses (SiO2+Bi2O3)
40
Conducting glasses (SiO2+Bi2O3)
41
Conducting glasses (SiO2+PbO2)
42
Conducting glasses (GeO2+Bi2O3)
43
Conducting glasses (SiO2+Bi2O3)
44
Silica based, low ε materials - structure
From K.Maex et al. J. Appl. Phys. 11, 93, 8793
45
low ε materials - annealing
46
low ε materials - annealing
47
low ε materials - ageing
48
Positron Spectroscopy in Solid State Physics
Intense beams ! Future ? Auger Spectroscopy Low-energy Positron Diffraction
49
Positron Spectroscopy in Solid State Physics
Intense beams ! Future ? Auger Spectroscopy Low-energy Positron Diffraction
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.