La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Circuitos polifásicos Circuitos eléctricos 2. Tensiones polifásicas.

Presentaciones similares


Presentación del tema: "Circuitos polifásicos Circuitos eléctricos 2. Tensiones polifásicas."— Transcripción de la presentación:

1 Circuitos polifásicos Circuitos eléctricos 2

2 Tensiones polifásicas

3 Notación de doble subíndice Por definición V ab es el voltaje del punto a respecto al punto b. a c bd V ad = V ab + V bd V ad = V ac + V cd = V ab + V bc + V cd

4 Sistema trifásico de voltaje +  +  +  a b c n 100  120° V 100  0° V 100  -120° V V an = 100  0° V rms V bn = 100  -120° V rms V cn = 100  -240° V rms

5 Diagrama fasorial V cn V bn V an V nb V ab =V an + V nb =V an – V bn = 100  0°–100  –120° V = 100 – (–50 –j86.6) V = 173.2  30° V

6 Tarea Sea V ab = 100/_0° V, V bd = 40/_80° V,Vca = 70/_200° V, determine a) V ad, b) V bc, c) V cd. Solución: 114.0/_20.2° V, 41.8/_145° V, 44.0/_20.6° V

7 Tarea Si I fj = 3 A, I de = 2 A, I hd = -6 A, determinar a) I cd, b) I ef, c)I ij Sol: -3 A, 7 A, A

8 Sistema monofásico de 3 conductores Fuente de 3 alambres Una fase a n b +  +  a n b V1V1 V1V1 V an = V nb = V 1 V ab = 2V an = 2V nb V an + V bn = 0 Permite trabajar en 110 V 0 220 V

9 aplicación a dos cargas iguales +  +  a n b V1V1 V1V1 ZPZP ZPZP A B N V an = V nb I aA = V an /Zp = I Bb = V nb /Zp por tanto I nN = I Bb + I Aa = I Bb – I aA = 0 I aA I nN I Bb

10 Ejemplo Determinar la potencia entregada a cada una de las tres cargas y la potencia perdida en el hilo neutro y en cada línea.

11 Solución en Matlab R1 = 1; R2 = 50; R3 = 20; R4 = 3; R5 = 100; R6 = 1; ZL = 10j; V1 = 115; V2 = 115; % matriz de impedancia Z = [R1+R2+R4, -R2, -R4;... -R2, R2+R3+R5+ZL, -R5;... -R4, -R5, R4+R5+R6]; V = [V1,0,V2]'; I = inv(Z)*V; polar(I(1)) polar(I(2)) polar(I(3)) IaA = I(1); IbB = -I(3); InN = I(3)-I(1); % potencias P50 = abs(I(1)-I(2))^2*R2 P100 = abs(I(3)-I(2))^2*R5 P20 = abs(I(2))^2*R3 % potencia linea superior PaA = abs(I(1))^2*R1 % potencia línea de tierra PbB = abs(I(3))^2*R6 % potencia línea inferior PnN = abs(InN)^2*R4

12 Solución I aA = 11.2437  -19.8349° A I bB = 10.3685  158.204° A I nN = 0.949937  -177.908° A P 50 = 206.6269 W P 100 = 117.2732 W P 20 = 1762.9 W P aA = 126.4205 W P bB = 107.5066 W P nN = 2.7071 W

13 Diagrama fasorial I bB I aA I nN V bn V an I aA + I bB

14 Tarea Determinar la potencia entregada a cada una de las tres cargas y la potencia perdida en el hilo neutro y en cada línea. 2.5  5.5  153.1 W, 95.8 W, 1374 W

15 Conexión trifásica Y Consideraremos solo fuentes trifásicas balanceadas. +  +  +  a b c n V an V bn V cn A B N C |V an | = |V bn | = |V cn | V ab + V bn + V cn = 0 V an = V p  0° V bn = V p  120° V cn = V p  240° O V bn = V p  120° V cn = V p  240°

16 Conexión trifásica Y V an = V p  0° V cn = V p  240° V bn = V p  120° Secuencia (+) V bn = V p  0° V cn = V p  240° Secuencia (-) V an = V p  0°

17 Tensiones de línea a línea V an V cn V bn V ab V bc V ca Voltajes de línea V ab =  3V p  30° V bc =  3V p  90° V ca =  3V p  210°

18 Conexión Y-Y +  +  +  ZpZpZpZp ZpZp a b c n A B N C I aA = V an / Z p I bB = I aA  ° I cC = I aA  ° I nN = I aA + I bB + I cC = 0

19 Ejemplo 12-2 % ejemplo 12-2 % Encontrar corrientes y tensiones en todo el circuito % a A % +----------------------+ % | +-------------------+ B % \ / b | | % \ / R R % V1 V2 \ / % \ / L L % \ / \ / % \/ n \/ N % | | % V3 L % | | % | R % | | % c +---------------------+ C % datos V1 = 200; V2 = 200*(cos(-120*pi/180)+j*sin(-120*pi/180)); V3 = 200*(cos(-240*pi/180)+j*sin(-240*pi/180)); Z = 100*(cos(60*pi/180)+j*sin(60*pi/180));

20 % Voltajes Van = V1; Vbn = V2; Vcn = V3; Vab = V1 - V2; Vbc = V2 - V3; Vca = V3 - V1; polar(Vab) polar(Vbc) polar(Vca) IaA = Van/Z; IbB = Vbn/Z; IcC = Vcn/Z; polar(IaA) polar(IbB) polar(IcC) PAN = abs(Van)*abs(IaA)*cos(angle(Van)-angle(IaA)) % RESULTADOS Vab = 346.41/_30° Vbc = 346.41/_-90° Vca = 346.41/_150° IaA = 2/_-60° IbB = 2/_-180° IcC = 2/_60° PAN = 200.00

21 Práctica 12-4 % prac 12-4 % un sistema trifasico balanceado Y-Y % Z = -100j, 100, 50+50j en paralelo % Vab = 400; % Encontrar corrientes, tensiones en todo el circuito y potencia % a A % +----------------------+ % | +-------------------+ B % \ / b | | % \ / \ / % V1 V2 Z Z % \ / \ / % \/ n \/ N % | | % V3 | % | Z % | | % c +---------------------+ C % datos Vab = 400; Z = 1/(1/-100j + 1/100 + 1/(50+50j)); % Voltajes Van = Vab/sqrt(3)*(cos(30*pi/180)+j*sin(30*pi/180)); polar(Van) IaA = Van/Z; polar(IaA) P = 3*abs(Van)*abs(IaA)*cos(angle(Van)-angle(IaA)) Van = 230.94/_30° IaA = 4.6188/_30° P = 3200.0

22 Ejemplo ejemplo 12-3 un sistema trifásico balanceado con una tensión de línea de 300 V se suministra a una carga balanceada Y con 1200 W a un FP adelantado de 0.8. Determine la corriente de línea y la impedancia de carga por fase. La tensión de fase es V an = Vp/  3 = 300/  3 V La potencia por fase es P = 1200/3 = 400 W Dado que P = V an *I L *FP I L = P/(V an *FP) = 2.89 A La impedancia es V p /I L Z P = V p /I L = 300/  3/2.89 = 60 Ohms

23 Ejemplo práctica 12-5 un sistema trifásico balanceado con una tensión de línea de 500 V y están presentes dos cargas balanceadas en Y, una carga capacitiva con 7 - j2 Ohms por fase y una carga inductiva con 4 + j2 Ohms. Determine a) la tensión de fase, b) la corriente de línea, c) la potencia total extraída por carga, d) el factor de potencia con el que opera la fuente Z C = 7 – 2j; Z L = 4 + 2j; la tensión de fase es V an = V p /  3 = 289 V la corriente de línea es I aA = V an / Z C || Z L = V an /(Z C *Z L /(Z C +Z L )) = 95.97 – 18j = 97.5  10.6° A la potencia total extraída por carga P = 3V an |I aA | el factor de potencia con el que opera la fuente FP = cos(10.6°) = 0.983

24 Tarea Práctica 12-6 Tres cargas balanceadas conectadas en Y se instalan en un sistema trifásico balanceado de 4 hilos. La carga 1 demanda una potencia total de 6 kW a un factor de potencia unitario. La carga 2 requiere 10 kVA a un FP = 0.96 retrasado, y la carga 3 necesita 7 kW a 0.85 retrasado. Si la tensión de fase en las cargas es 135 V, cada línea tiene una resistencia de 0.1  y el neutro tiene una resistencia de 1 , determine a) la potencia total consumida por las cargas, b) el FP combinado de las cargas, c) la pérdida de potencia total en las 4 líneas, d) la tensión de fase en la fuente y e) el factor de potencia con el que opera la fuente,

25 Conexión delta (  +  +  +  ZpZpZpZp ZpZp a b c n A B C Corrientes de fase I AB = V ab / Z p I BC = V bc / Z p I CA = V ca / Z p Corrientes de línea I aA = I AB  I CA I bB = I BC  I AB I cC = I CA  – I BC Tensiones de línea V L = |V ab | = |V bc | = |V ca | Tensiones de fase V P = |V an | = |V bn | = |V cn | V L =  3V P y V ab =  3V P  30°

26 Conexión delta (  V an V cn V bn V ab V bc V ca Corrientes de línea I L = |I aA | = |I bB | = |I cC | I L =  3I p I AB I aA I CA I BC I cC I bB

27 Ejemplo 12.5 Determine la amplitud de la corriente de línea en un sistema trifásico con una tensión de línea de 300 V que suministra 1200 W a una carga conectada en  a un FP de 0.8 retrasado. Con la potencia y el voltaje calculamos la corriente de fase: 400 = (300)(I P )(0.8) o I P = 1.667 A La corriente de línea es I L = (  3) I P = (  3)1.667 = 2.89 A El ángulo de fase es: cos -1 (0.8) = 36.9°, así que la impedancia es: Z P = (300  36.9°)/1.667 = 180  36.9° Ohms

28 Práctica 12-7 Cada fase de una carga trifásica balanceada conectada en delta consiste en un inductor de 0.2 H en serie, con una combinación en para lelo de un capacitor de 5  F y una resistencia de 200 . Piense en una resistencia de línea cero y una tensión de fase de 200 V a  = 400 rad/s. Determine a) la corriente de fase, b) la corriente de línea; c) la potencia total que absorbe la carga.

29 Solución práctica 12-7 % Z = L + C||R, Vp = 200 V, w = 400 rad/s L = 0.2; C = 5e-6; R = 200; w = 400; Vp = 200; % a) corriente de fase ZL = j*w*L; ZC = 1/(j*w*C); Z = ZL + ZC*R/(ZC+R) Ip = Vp/Z; abs(Ip) % b) corriente de linea IL = sqrt(3)*abs(Ip) % c) potencia total que absorbe la carga P = 3*Vp*abs(Ip)*cos(angle(Ip)) Z = 172.414 + 11.034i IP = 1.1576 IL = 2.0051 P = 693.16

30 Potencia monofásica ++ Red pasiva Bobina de potencial Bobina de corriente El momento de torsión aplicado a la aguja indicadora es proporcional al producto instantáneo de las corrientes que fluyen por las bobinas. Debido a la inercia mecánica, la desviación de la aguja es proporcional al promedio de del momento de torsión.

31 ejemplo ++ + _ + _ V 1 = –100  90° VV 2 = 100  0° V 10  5j 5j  I Determinar la potencia absorbida por la fuente de la derecha. Mediante análisis de malla de obtiene: I = 11.1803  153.435° P = |V 2 ||I|cos(ang(V 2 )-ang(I)) = –1000 La aguja indicadora descansa contra el tope de la escala descendente.

32 Wattímetro en el sistema trifásico conexión estrella A + + ++ ++ B C

33 Wattímetro en el sistema trifásico conexión delta A + + + + + + B C

34 Método de tres wattímetros ++ ZAZA ZBZB ZCZC A B N C ++++ a b c x

35 Cálculo de potencia La potencia promedio es: La potencia total es: Se cumple que:v Ax = v AN + v Nx v Bx = v BN + v Nx v Cx = v CN + v Nx Por tanto: Pero: i aA + i bB + i cC = 0 Por lo tanto:

36 Ejemplo Supongamos una fuente balanceada: V ab = 100/_0° V V bc = 100/_–120° V V ca = 100/_–240° V o V an = 100 /  3 /_–30° V bn = 100 /  3/_–150° V cn = 100 /  3 /_–270° Y una carga desvalanceada Z A = –j10  Z B = j10  Z C = 10  Por análisis de mallas se obtiene I aA = 19.32/_15° A I bB = 19.32/_165° A I cC = 10/_–90° A La tensión entre los neutros es: V nN = V nb + V BN = V nb + I bB (j10) = 157.7/_–90° La potencia indicada por los wattimetros es: P A = V P I aA cos(ang V an – ang I aA ) = 788.7 W P B = 788.7 W P C = –577.4 W La potencia total es 1kW

37 Solución en Octave %Ejemplo de potencia trifásica % datos Van = 100/sqrt(3)*exp(- 30*i*pi/180); Vbn = 100/sqrt(3)*exp(- 150*i*pi/180); Vcn = 100/sqrt(3)*exp(- 270*i*pi/180); ZA = -10j; ZB = 10j; ZC = 10; %Matriz de impedancias Z = [ZB+ZA -ZA; -ZA ZA+ZC]; %vector de voltajes V = [Van-Vbn Vbn-Vcn]'; %Corrientes de malla I = inv(Z)*V; IaA = -I(2)+I(1); IbB = -I(1); IcC = I(2); polar(IaA) polar(IbB) polar(IcC) VnN = -Vbn + IbB*ZB; polar(VnN) PA=abs(Van)*abs(IaA)*cos(angle(Van)- angle(IaA)) PB=abs(Vbn)*abs(IbB)*cos(angle(Vbn)- angle(IbB)) PC=abs(Vcn)*abs(IcC)*cos(angle(Vcn)- angle(IcC)) P = PA+PB+PC P = abs(IcC)*abs(IcC)*ZC 19.3185/_15° 19.3185/_165° 10/_-90° 157.735/_-90° PA = 788.68 PB = 788.68 PC = -577.35 P = 1000.0

38 Método de 2 wattímetros El punto x del método de 3 wattimetros puede escogerse como el punto B, entonces el segundo wattimetro indicaría wattimetro 0. La potencia total sería la suma de las lecturas de los otros dos independientemente de: 1) El desbalance de la carga 2) El desbalance de la fuente 3) La diferencia entre los dos wattimetros 4) La forma de onda de la fuente periódica

39 Ejemplo El ejemplo anterior con dos wattimetros uno con la línea de potencial entre A y B y otro entre C y B se tendría: P 1 = V AB I aA cos(ang V AB – ang I aA ) = 100 (19.32) cos(0° – 15°) = 1866 W P 2 = V CB I cC cos(ang V CB – ang I cC ) = 100 (10) cos(60° + 90°) = –866 W P = 1866 – 866 = 1000 W

40 Medición de FP ZpZpZpZp ZpZp A B C ++++ a c b 1 2

41 P 1 = |V AB | |I aA | cos(angV AB – angI aA ) = V L I L cos(30° +  ) y P 2 = |V CB | |I cC | cos(angV CB – angI cC ) = V L I L cos(30° –  )

42 Ejemplo ++ ++ a c b 1 2 4  j15  A B C V ab = 230/_0° V V bc = 230/_–120° V V ca = 230/_–240° V P 2 = |V bc | |I bB | cos(angV bc – angI bB ) = (230)(8.554)cos(–120° – 134.9°) = –512.5W P 1 = |V ac | |I aA | cos(angV ac – angI aA ) = (230)(8.554)cos(–60° + 105.1°) = 1389W P = 876.5 W

43 Tarea ++ ZAZA ZBZB ZCZC A B N C ++++ a b c x Sea Z A = 25/_60° , Z B = 50/_-60° , Z C = 50/_60° , V AB = 600/_0° Vrms, con secuencia de fase (+) y el punto x se ubica en C. Determine a) P A, a) P B, a) P C.

44 Potencia trifásica Para una carga Y la potencia por fase es P P =V P I P cos  = V P I L cos  =V L I P cos  La potencia total es P =3P =  V L I P cos  Para una carga  la potencia por fase es P P =V P I P cos  = V L I P cos  =V L I P cos  La potencia total es P =3P =  V L I P cos 


Descargar ppt "Circuitos polifásicos Circuitos eléctricos 2. Tensiones polifásicas."

Presentaciones similares


Anuncios Google