Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porSaturnino Poveda Modificado hace 10 años
1
y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
Sea f (x)= x3 - x. Hallar la ecuación de la recta tangente y normal al gráfico de f en el punto de abscisas x=1 y en el punto x = -√(1/3). y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
2
y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
Sea f (x)= 3x Hallar la ecuación de la recta tangente y normal al gráfico de f en el punto de abscisas x=1 y en el punto x =0. y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
3
y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
Sea f (x)= x3 - x2. Hallar la ecuación de la recta tangente y normal al gráfico de f en el punto de abscisas x=-1/2 y en el punto x =2/3. y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
4
y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
Sea f (x)= 3x2 -2x. Hallar la ecuación de la recta tangente y normal al gráfico de f en el punto de abscisas x=3/2 y en el punto x =-1/2. y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
5
y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
Sea f (x)= x4 -4x2. Representar. Hallar la ecuación de la recta tangente y normal al gráfico de f en el punto de abscisas x=3/2, x = √2 y en el punto x =1/2. y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
6
y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
Sea f (x)= 4x3 -8x. Representar. Hallar la ecuación de la recta tangente y normal al gráfico de f en el punto de abscisas x=3/2, x = √2 y en el punto x =1/2. y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
7
y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
Sea f (x)= (x -1)/(x+1). Representar. Hallar la ecuación de la recta tangente y normal al gráfico de f en el punto de abscisas x=0 y en el punto x =-1. y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
8
y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
Sea f (x)= 2/(x+1)2. Representar. Hallar la ecuación de la recta tangente y normal al gráfico de f en el punto de abscisas x=2 y en el punto x =-1. y= f(x0) + f´(x0) · (x - x0) y= f(x0) -1/ f´(x0) · (x - x0)
Presentaciones similares
© 2024 SlidePlayer.es Inc.
All rights reserved.