La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

MÓDULO 4 MAGNETOSTÁTICA

Presentaciones similares


Presentación del tema: "MÓDULO 4 MAGNETOSTÁTICA"— Transcripción de la presentación:

1 MÓDULO 4 MAGNETOSTÁTICA
M. Sc. Luz Aída Sabogal Tamayo Semestre 2016_10

2 MÓDULO 3: ELECTROMAGNETISMO
MAGNÉTOSTÁTICA: capítulos 28 y 27 Fuentes de campo magnético Formas de calcular el campo magnético: Ley de Biot – Savart Ley de Ampere Efectos de los campos magnéticos: Sobre cargas eléctricas en movimiento (Fuerza) Sobre corrientes eléctricas (Fuerza y momento de torsión) Sobre la materia en general: La magnetiza Aplicaciones de los efectos De las fuerzas magnéticas sobre cargas eléctricas en movimiento De las fuerzas magnéticas sobre corrientes eléctricas Del Momento de Torsión magnético: efecto de rotación producido por fuerzas magnéticas Flujo eléctrico, (definición y su forma de calcularlo), Ley de Gauss para Campo Magnético

3

4 FUENTES DE CAMPO MAGNÉTICO
Imanes naturales Corrientes eléctricas “Toda carga en movimiento produce a su alrededor campo magnético” Campos eléctricos variables en el tiempo, pero los campos magnéticos así producidos no son magnetostáticos

5 La Unidad de Camp Magnético en el MKS es la Tesla [T] una T= N/Am
Valores típicos de Campo Magnético: Campo Magnético en Medellín 0,3 X10 -4 T Imán de laboratorio 2.5 T Imán de superconductores 25 T Campo generado por una I de 0,2 A, en una bobina cuadrada de 9 espiras 10 µT Campo generado por una I de 0,2 A, en una bobina circular de 3400 espiras 5,7mT

6 = permeabilidad magnética del vacío
LEY DE BIOT - SAVART Campo producido por una carga en movimiento Donde: q = carga en movimiento = velocidad de la carga = Dirección del vector posición = permeabilidad magnética del vacío

7 LEY DE BIOT - SAVART Campo producido por una carga en movimiento

8 LEY DE BIOT - SAVART Ejercicio de campo magnético generado por una carga eléctrica en movimiento Una carga puntual de 6 μC, se desplaza con velocidad constante de 8x106 m/s en dirección +y. En el instante en que la carga se encuentra en el origen del sistema de referencia. Hallar el vector campo magnético en: a) (0.5, 0,0)m b) (0, -0.5, 0.5)m 1.92x10-5 T ; 6.79x10-6 T

9 LEY DE BIOT - SAVART Campo producido por una corriente eléctrica que circula por una alambre

10 LEY DE BIOT - SAVART Campo magnético generado por una corriente que circula en un alambre recto. Operatividad: se divide el alambre en ∞ dl, cada uno lleva la misma I produciendo en p un diferencial de campo magnético. Por tanto, el campo neto en p, debe ser la integral vectorial

11 LEY DE BIOT - SAVART (continuación) para hallar los límites de integración, se debe modelar el alambre recto como finito o como infinito. Si el alambre recto se asume de LONGITUD INFINITA, entonces:

12 LEY DE BIOT - SAVART Campo magnético generado por una corriente que circula en una ESPIRA CUADRADA de lado d La espira cuadrada, se modela como cuatro alambres rectos y a su vez los alambres rectos se asumen de LONGITUD FINITA. Por tanto,

13 LEY DE BIOT - SAVART Campo magnético generado por una corriente que circula en una ESPIRA CIRCULAR de radio a. Operatividad: se divide el alambre en ∞ dl, cada uno lleva la misma I produciendo en p un diferencial de campo magnético. Por tanto, el campo neto en p, debe ser la integral vectorial ( se debe demostrar que las componentes del campo en y y en z se anulan por simetría.

14 LEY DE BIOT - SAVART Campo magnético en un punto sobre el eje de simetría de la espira circular Campo magnético en el centro de la espira circular, esto es para x=0

15 LÍNEAS DE CAMPO MAGNÉTICO

16 Campo magnético de dos alambres con corriente

17 Ejercicio de comprensión
Un alambre de cobre lleva una corriente de 125 A, a un tanque de galvanoplastia. Encuentre el campo magnético generado por un segmento de 1,0 cm. de este alambre en un punto situado a 1,2 cm. de él, si el punto es a) el punto P1, directamente hacia fuera a un costado del segmento. B) el punto P2 sobre la línea a 30 º del segmento ver figura

18 Campo generado por las Bobinas de Helmholtz
Dos bobinas circulares iguales, conectadas en serie y separadas una distancia igual a su radio medio. Si las bobinas están en el plano YZ, la corriente eléctrica fluye en sentido antihorario en dicho plano. El campo magnético entre ellas será: Este campo es magnetostático y uniforme espacialmente

19 Campo generado por solenoide
Un solenoide es una bobina larga en la cual se cumple que su radio es más pequeño que la longuitud. Si las espiras están bien juntas el campo en el interior del solenoide es uniforme y esta dado por El campo magnético entre ellas será: Este campo es magnetostático y uniforme espacialmente

20 Campo generado por dos imanes permanentes
Otra configuración de campo magnetostático uniforme, es con dos imanes permanentes iguales enfrentando el polo norte de uno con el sur de otro y evitando su movimiento de atracción. El campo magnético entre ellas será: Este campo es magnetostático y uniforme espacialmente

21 FUERZA DE UN CAMPO MAGNÉTICO SOBRE UNA CARGA ELÉCTRICA

22

23 Movimiento de una partícula cargada en un campo magnético uniforme
Una partícula cargada en un campo magnético siempre se mueve con velocidad constante. La figura a la derecha ilustra las fuerzas y muestra un ejemplo experimental. Si la velocidad de la partícula es perpendicular al campo magnético, la partícula se mueve en un círculo de radio R = mv / | q |B. El número de revoluciones de la partícula por unidad de tiempo es la frecuencia del ciclotrón.

24 Experimento de Thomson (e/m)
Se determina de manera experimental la razón e/m para el electron. El aparato se muestra en la siguiente figura

25 Movimiento de una Carga en un Campo Magnetico no Uniforme
Figure at the right shows charges trapped in a magnetic bottle, which results from a nonuniform magnetic field. Figure below shows the Van Allen radiation belts and the resulting aurora. These belts are due to the earth’s nonuniform field.

26 MOVIMIENTO DE CARGA CON UNA SOLA COMPONENTE PERPENDICULAR AL CAMPO MAGNÉTICO
En un campo magnético no uniforme En un campo magnético uniforme

27 FUERZA MAGNÉTICA SOBRE UN CONDUCTOR
Un alambre de cobre transporta una corriente de 50A, en una región donde hay un campo magnético hacia el noreste de 1,20T. Encuentre la fuerza sobre una sección de 1m? Cómo se debe orientar para que la fuerza sea máxima. Campo magnético uniforme y corriente eléctrica en alambre recto

28 FUERZA MAGNÉTICA SOBRE UN CONDUCTOR
Cuál es la fuerza magnética sobre el alambre de la figura si éste lleva una I. Se modela el alambre como tres alambres dos rectos y uno curvo Cuál es la fuerza magnética sobre los 3 segmentos de alambre? . Para el tramo 2, se tiene campo magnético uniforme y corriente eléctrica en alambre curvo . Por tanto, se divide el alambre curvo en ∞ dl, cada uno lleva la misma I. Por tanto, el campo le hace un diferencial de fuerza y la fuerza neta es la integral vectorial

29 TORQUE O MOMENTO DE TORSIÓN SOBRE UNA ESPIRA CON CORRIENTE
Se modela la espira rectangular como cuatro alambres rectos y se halla la fuerza magnética que el campo le hace a cada tramo La fuerza neta es cero pero el torque neto es diferente de cero La espira no se desplaza pero rota en sentido horario en el plano XZ

30 TORQUE O MOMENTO DE TORSIÓN SOBRE UNA ESPIRA CON CORRIENTE

31 TORQUE MAGNÉTICO Y ENEGÍA POTENCIA MAGNÉTICA

32 MOTOR DE CORRIENTE CONTÍNUA

33 MAGNETIZACIÓN: Magnetón de Bohr
El magnetón de Bohr, s3e modela el movimiento circular del electrón como una espira de corriente h= 6.626x10-34 J.s =9.274X10-24J/T

34 MAGNETIZACION DE LA MATERIA
MATERIRALES FERROMAGNETICOS: Los materiales ferromagnéticos se magnetizan fuertemente en el mismo sentido que el campo magnético aplicado. En la llamada temperatura de Curie, el material se vuelve paramagnético. La permeabilidad relativa es mucho mayor que la unidad, es del orden de 1000 y El resultado es que el campo en el material es mayor en un factor Km (permeabilidad relativa), tiene valores entre (KM 1, Y 1,003). La permeabilidad magnética del material es entonces La cantidad en que la permeabilidad difiere de la unidad se llama susceptibilidad magnética

35 MAGNETIZACION DE LA MATERIA
MATERIRALES PARAMAGNETICOS: se magnetizan débilmente en el mismo sentido que el campo magnético aplicado. La intensidad de la respuesta es muy pequeña, y los efectos son prácticamente imposibles de detectar excepto a temperaturas extremadamente bajas o campos aplicados muy intensos. El movimiento térmico se opone a la alineación de los momentos magnéticos, por tanto la susceptibilidad paramagnética disminuye con la temperatura. Por tanto la magnetización puede expresarse como Esta relación se denomina Ley de Curie

36 MAGNETIZACION DE LA MATERIA
MATERIALES DIAMAGNETICOS: se magnetizan débilmente en el sentido opuesto al del campo magnético aplicado. Resulta así que aparece una fuerza de repulsión sobre el cuerpo respecto del campo aplicado, porque dipolos magnéticos inducidos. La intensidad de la respuesta es muy pequeña. El diamagnetismo fue descubierto por Faraday en Ejemplos de materiales diamagnéticos son el cobre, plata y el helio. Campo magnético dentro del material: B = μ H μ = Km μo = μo (1+ χm) La susceptibilidad magnética es negativa entonces la permeabilidad relativa Km es ligeramente menor que la unidad Las susceptibilidades diamagnéticas están cerca de ser independientes de la temperatura

37 MAGNETIZACIÓN DE LA MATERIA

38 Diamagnetism and ferromagnetism
Follow the text discussion of diamagnetism and ferromagnetism. Figure at the right shows how magnetic domains react to an applied magnetic field. Figure below shows a magnetization curve for a ferromagnetic material.

39 Tabla de susceptibilidades magnéticas χm a T ambiente y a una presión de 1 atmósfera
Paramagnéticos (+) Diamagnéticos (-) Oxígeno 1.9×10 -6 Sodio ×10 -6 Magnesio 1.2×10 -5 Aluminio 2.1×10 -5 Tungsteno 7.6×10 -5 Titanio 1.8×10 -4 Platino 2.9×10 -4 Uranio ×10 -4 Hidrógeno ×10 -9 Nitrógeno -6.7×10 -9 CO ×10 -8 Alcohol ×10 -5 Agua ×10 -5 Cobre ×10 -5 Plata ×10 -5 Oro ×10 -5

40 Material TC (K) Fe Co Ni Gd Dy CrBr Au2MnAl Cu2MnAl Cu2MnIn 500 EuO EuS MnAs 318 MnBi 670 GdCl Fe2B MnB 578

41

42 Histéresis magnética Km no es constante sino que disminuye conforme aumenta B

43

44 Hysteresis Read the text discussion of hysteresis using Figure below. Follow Example

45 LEY DE AMPERE (case especial)
Ley de Ampere usa la evalución de la ciruclacion del campo magnético, para determinar el campo magnetico producido por una corriente eléctrica. A continuación uso de la Ley de Ampre para hallar el campo magnético de una corriente en alambre recto.

46 Ley de Ampere (Declaración Gral.)
Figuras and 28.18

47 CAMPO MAGNÉTICO DE UNA (I) EN ALAMBRE RECTO
Ejemplo 28.7. Ejemplo 28.8 conductor recto cilindrico, Figures y 28.21

48 CAMPO MAGNÉTICO DE UNA (I) EN UN SOLENOIDE
Ejemplo , Figures 28.22–28.2

49 Gráfica del campo en un solenoide

50 CAMPO MAGNÉTICO DE UNA (I) EN UN TOROIDE
Ejemplo , Figure 28.25


Descargar ppt "MÓDULO 4 MAGNETOSTÁTICA"

Presentaciones similares


Anuncios Google