Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porAna Isabel Rivero Agüero Modificado hace 7 años
1
AS 42A: Astrofísica de Galaxias Clase #1
Profesor: José Maza Sancho 6 Marzo 2006
2
Profesores del curso: Dr. Mario Hamuy Wackenhut: Introducción a la Cosmología Dr. José Maza Sancho: Introducción a astrofísica de galaxias. Ayudante: Srta. Yanett Contreras
5
Bibliografía “An Introduction to Galaxies and Cosmology” Mark Jones & Robert Lambourne, Cambridge University Press, 2004. “Galaxies in the universe” Linda Sparke & J. Gallagher, Cambridge University Press, 2000. “Galaxies: Structure and Evolution” R. Tayler, Cambridge University Press, 1996. “Galaxies and Galactic Structure” Debra Elmegreen, Prentice Hall, 1998. “Astrophysics II: Interstellar matter & Galaxies” Richard Bowers & Terry Deeming, Jones & Bartlett Publishers, 1984.
6
Introducción: Las galaxias son grandes conglomerados de estrellas que contienen desde 106 hasta 1012 estrellas. El Universo está lleno de miles de millones de galaxias que se agrupan en cúmulos que contienen desde unas pocas docenas hasta varios miles de galaxias.
7
Se define la LUMINOSIDAD de una estrella como la cantidad de energía que emite por unidad de tiempo.
A una distancia “d” de una estrella se define el flujo como la cantidad de energía recibida por cm2 por segundo.
8
El flujo que recibimos del Sol se llama la constante solar y corresponde a 2 calorías por cm2 por minuto. Unidad astronómica de distancia: kilómetros Luminosidad solar:
9
Luminosidades estelares
Las luminosidades de las estrellas están comprendidas en un amplio rango:
10
Masas estelares Masa solar: Mo = 2x1033 gramos
Mo = masas terrestres (M) M = 5,98x1027 gr. Masas estelares:
11
Radios estelares Ro = km Radios estelares:
12
Radio angular del Sol = 961
Diámetros angular del Sol = 1.992 Distancia a la estrella más cercana = U.A. Diámetro angular del sol a U.A / = 0,007 ES MUY DIFICIL MEDIR DIAMETROS ESTELARES.
13
TEMPERATURAS DE FOTÓSFERAS ESTELARES
Temperatura fotosférica del Sol: K
14
Luminosidad SB = constante de Stefan-Blotzman
SB = 5,67 x 10-8 W m-2 K-4 = 5,67 x 10-5 erg cm-2 K-4
15
Temperatura efectiva Se define la temperatura efectiva de una estrella como la temperatura que debe tener un cuerpo negro que emita, por unidad de superficie, lo mismo que la estrella.
16
FLUJO Para un cuerpo negro:
17
Ley de Wien 1 Å = 1 Angstrom = 10-8 cm = 10-10 m
Para el Sol T K max = 2,9/5.800 = 5x10-4 mm = Å
18
Espectros estelares Hacia fines del siglo XIX, en el Observatorio de Harvard, se desarrolló un sistema de clasificación de espectros estelares. Se clasificaron las estrellas de acuerdo con la intensidad de las líneas de Balmer. Luego tuvieron que re-ordenar la secuencia para hacerla compatible con una secuencia de temperaturas. O, B, A, F, G, K, M
19
Casi 400.000 estrellas fueron clasificadas en el catálogo Henry Draper (HD).
Cada tipo espectral se sub-divide en diez pares, de 0 a 9 (ejemplo: el Sol es G2). O, B, A: estrellas tempranas G, K, M estrellas tardías
20
Estrellas O: T > K líneas de HeII y CIII Estrellas B: < T < 30.00 líneas de HeI Estrellas A: < T < serie de Balmer alcanza su máxima intensidad Estrellas F: < T < 7.500 Balmer en declinación, metales ionizados
21
Estrellas G: 5.200 < T < 6.000
metales ionizados metales neutros líneas H & K del CaII muy prominentes banda G del CH en 4300 Å Estrellas K: < T < 5.200 líneas de metales neutros TiO Estrellas M: < T < 3.800 bandas moleculares TiO (óxido de Titanio) y VO (óxido de Vanadio)
22
El espectro de una galaxia es una mezcla de diferentes clases de estrellas.
En el azul el esppectro está dominado por las estrellas A, F y G. En el rojo por las K y las M. Las estrellas O y B son muy poco abundantes para dominar el especto de una galaxia. Los espectros estelares contienen información acerca de la temperatura fotosférica, de la composición química y también acerca de la gravedad superficial.
23
Mayor gravedad superficial implicará mayor densidad electrónica y por efecto Stark, un ensanchamiento de las líneas. Hay estrellas gigante y enanas. Las enanas tienen alta gravedad superficial y líneas anchas. Las gigantes tienen baja gravedad superficial y líneas angostas.
27
Donde: 5 para M Mo 3,9 para Mo M 10 Mo y para Mo M
28
Enanas Blancas R ~ 0,01 Ro ~ R
En un sentido estricto las enanas blancas son remanentes estelares no estrellas, pues no generan energía EB ~ 106 o o ~ 1,4 gr cm-3 EB ~ 106 gr cm-3
29
Tiempo en la secuencia principal:
Como L ~ M3,5 ~ M-2,5
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.