La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Capítulo 7 MOMENTO LINEAL Y COLISIONES.

Presentaciones similares


Presentación del tema: "Capítulo 7 MOMENTO LINEAL Y COLISIONES."— Transcripción de la presentación:

1 Capítulo 7 MOMENTO LINEAL Y COLISIONES

2 Cantidad de Movimiento lineal de una partícula
Se define como el producto de la masa por la velocidad de la partícula. [kg m/s] px = mvx py = mvy pz = mvz Tiene carácter vectorial, y como m es un escalar, entonces p V

3 1ra ley de Newton Un cuerpo libre de la acción de otros cuerpos se moverá con cantidad de movimiento constante (p = cte) o permanecerá en reposo hasta que algún agente externo le modifique su estado de movimiento

4 m Sistema aislado

5 Sistema de una partícula
2da ley de Newton La segunda ley de Newton se puede escribir en función del momento lineal:

6 Sistema de partículas rj sistema vj Cuerpo externo
vj rj Cuerpo externo La sumatoria de las fuerzas internas se hace cero, teniendo en cuenta que dentro del sistema están todas las parejas de cuerpos que sienten los pares de acción y reacción.

7 2da ley de Newton

8 Conservación de la cantidad de movimiento lineal
Cuando la resultante de las fuerzas externas que actúan sobre un sistema se anula, entonces se conserva la cantidad de movimiento lineal del sistema

9 Impulso de una Fuerza

10 m m t2 t1

11 En el caso en que esté actuando una fuerza
resultante sobre el sistema: integrando ambos miembros, obtenemos:

12 el impulso es igual al cambio de
Impulso de una fuerza A la cantidad anterior se le conoce como Impulso I de la fuerza F en el intervalo , el impulso es igual al cambio de momento lineal

13 Una pelota colisionando con una pared rígida

14

15 Mientras la pelota colisiona con la pared, ella se deforma rápidamente, lo cual indica que la fuerza de interacción pared pelota crece monótonamente con el tiempo, cuando la deformación de la pelota es máxima, entonces la fuerza que actúa sobre la pelota también lo es.

16 F Comportamiento de la fuerza impulsiva con el tiempo A t(s)

17 Es conveniente definir una fuerza promedio como:
Por lo tanto el impulso también se puede expresar como:

18 Una pelotita de 100g de masa se deja caer desde una altura de 2m y rebota verticalmente tal como se indica. determine la fuerza promedio que el piso ejerció sobre la pelotita, si el tiempo de interacción pared -pelota fue de 0,02s H=2m h=1,5m

19 En el sistema mostrado determinese el impulso que la pelotita recibe y la fuerza promedio sobre ella, si el tiempo de interacción pared -pelota fue de 0,025s v m= 10kg V=50m/s v

20 Choques

21 Conservación de la cantidad de movimiento lineal
En los choques la cantidad de movimiento lineal del sistema siempre se conserva, pues las fuerzas externas, de existir, se desprecian frente a las internas, las cuales son muy intensas mientras actúan.

22 Conservación del momento para un sistema de dos partículas
Como Corresponden al par acción reacción se cumple : p1=m1v1 F12 m1 F21 m2 p2=m2v2

23 inelástico elástico inelástico plástico Clasificación de los choques
K  0 K máxima Se conserva la cantidad de movimiento p del sistema NO se conserva la energía cinética K del sistema K no es cero Se conserva la cantidad de movimiento p del sistema p = 0 Se conserva la energía cinética K del sistema K = 0

24 Tipos de colisión Elástica: Inelásticas

25 colisión perfectamente inelástica
m1+ m2 m2 Choque plástico

26 Choques perfectamente inelásticos
Antes de la colisión v1i v2i m1 m2 Después de la colisión m1 + m2 vf

27 Choque plástico

28 Choque elástico

29

30

31 Antes Después Sus momentos lineales se intercambian

32

33 Si asumimos que m2 esta en reposo
Antes Después m1 rebota elásticamente

34 Choques virtuales Haga click en choques

35 Problema Un bloque de masa m1=1.6kg, moviendose hacia la derecha con una velocidad de 4m/s sobre un camino horizontal sin fricción, choca contra un resorte sujeto a un segundo bloque de masa m2=2,1kg que se mueve hacia la izquierda con una velocidad de 2,5m/s. (k=de 600N/m). En el instante en que m1 se mueve hacia la derecha con una velocidad de 3m/s determine: a) la velocidad de m2 b) la distancia x que se comprimió el resorte

36 k m1 m2 m1 m2

37 Obtenemos: Por conservación del momento lineal
Por conservación de la energía: X = 0,173m

38 Un choque no frontal elástico entre dos partículas
v1f senq v1f v1f cosq v1f q f v2fcos f Antes -v2f sen f Después

39 Ejemplo. En un juego de billar se quiere introducir la bola roja en la buchaca después de golpearla con la blanca. Si la buchaca está a 35o a qué ángulo se desvía la bola blanca?

40 v1i v1f v2f x y 35o q

41 se denomina centro de masa (C.M.)
Un sistema mecánico complejo se comporta como si toda su masa estuviera concentrada en un punto que se denomina centro de masa (C.M.) Para un conjunto de masas puntuales el CM se calcula :

42 m1 m2 m3 m4 m5 m6 y x r1 r4 r6

43 para una distribución continua de masa:
y x rCM z r

44 Ejemplo. Se tienen 3 masas iguales en los
vértices de un triángulo rectángulo. Calcular el vector C.M. y h x a d

45 Ejemplo. dm y c b dx x x a

46 Centro de Masa

47 MOVIMIENTO DE UN SISTEMA
DE PARTÍCULAS

48 El momento total P es el producto de la
masa total M por la velocidad del centro de masa.

49

50 Al hacer la suma las fuerzas
internas de acción y reacción se cancelan de modo que sólo quedan las fuerzas externas. Entonces la ecuación anterior se reduce a:

51 CM Si la FR que actúa sobre el sistema es igual 0, entonces el Centro de Masa del Sistema se mueve con MRU, o está en reposo sistema

52 en palabras: el centro de masa se mueve como una partícula imaginaria de masa M con la influencia de la fuerza externa resultante sobre el sistema. Si la fuerza resultante externa es cero entonces el CM se mueve con MRU


Descargar ppt "Capítulo 7 MOMENTO LINEAL Y COLISIONES."

Presentaciones similares


Anuncios Google