Descargar la presentación
La descarga está en progreso. Por favor, espere
1
Los principios inmediatos o biomoléculas
Los elementos biogénicos se combinan entre sí para formar sustancias compuestas definidas. Estos compuestos que se pueden aislar por medios puramente físicos como la disolución, la filtración, la destilación, la centrifugación, etc. constituyen los llamados principios inmediatos. Pueden ser: Inorgánicos (agua y sales minerales) Orgánicos (glúcidos, lípidos, prótidos y ácidos nucleicos). Los principios inmediatos también pueden ser simples o compuestos: Simples: Las moléculas están formadas por átomos del mismo tipo (02) Compuestos: Hay átomos de diferentes elementos (H2O, CO2).
2
PRINCIPIOS INMEDIATOS
Simples oxígeno molecular (02) y nitrógeno molecular (N2) Compuestos Inorgánicos (unidos por enlaces iónicos) agua, dióxido de carbono y sales minerales Orgánicos (unidos por enlaces covalentes) Glúcidos, lípidos, proteínas y ácidos nucleicos
3
El agua El agua es la sustancia química más abundante en la materia viva. La cantidad presente en un organismo depende de la especie, de la edad del individuo y del órgano. Organismo % agua Tejido Algas Caracol Crustáceos Espárragos Espinacas Estrella mar Persona adulta Hongos Lechuga Lombriz Maíz Medusa Pino Semilla Tabaco Trébol 98 80 77 93 76 62 95 83 86 47 10 92 90 Líq. cefalorraquídeo Sangre (plasma) Sangre (Gl. rojos) Tej. nervioso (s.gris) Tej. nervioso (Médula) Tej. nervioso (s.blanca) Músculo Piel Hígado Tej. conjuntivo Hueso (sin medula) Tej. adiposo Dentina 99 91-93 60-65 85 75 70 75-80 72 70-75 60 20-25 10-20 3
4
CUADRO RESUMEN DE LAS BIOMOLÉCULAS
Existe una relación directa entre contenido en agua y actividad fisiológica de un organismo: Los más activos, como las reacciones bioquímicas se realizan en medio acuático, tienen más cantidad de agua. También tiene relación con el medio en el que se desenvuelve el organismo. Así, los menores porcentajes se dan en seres con vida latente, como semillas, virus, etc., pero también encontramos altos porcentajes de agua en seres como la medusa (95% de agua) pese a su metabolismo poco intenso. El contenido de agua de un organismo tiene que ser más o menos constante, con variaciones inferiores al 10%. En caso contrario, se producen graves alteraciones (hidratación y deshidratación) que sobre todo en el último caso pueden producir la muerte. ARN ADN Ácidos nucleicos Holoproteínas Heteroproteínas Proteínas Saponificables Insaponificables Lípidos Monosacáridos Ósidos Glúcidos Orgánicas Agua Sales minerales Inorgánicas B I O M L É C U A S
5
Agua circulante (sangre, savia…)
El agua se encuentra en la materia viva en tres formas: Como agua circulante, por ejemplo, en la sangre, en la savia, etc. Se encarga principalmente del transporte de sustancias. Como agua intersticial, entre las células, a veces fuertemente adherida a la sustancia intercelular (agua de imbibición), como sucede en el tejido conjuntivo. Como agua intracelular, en el citosol y en el interior de los orgánulos celulares. En los seres humanos, el agua circulante supone el 8 % de su peso, el agua intersticial el 15 %, y el agua intracelular el 40 % Agua circulante (sangre, savia…) Agua intercelular Células Agua intersticial
6
Los organismos pueden conseguir el agua directamente a partir del agua exterior o a partir de otras biomoléculas mediante diferentes reacciones bioquímicas, es lo que se denomina «agua metabólica» (en los camellos, la degradación de la grasa de la joroba produce agua y por ejemplo, a partir de la oxidación de la glucosa, también aparece agua).
7
El agua, a temperatura ambiente, es líquida, (otras moléculas de peso molecular parecido, como el SO2, el CO2 o el NO2 son gases). Este comportamiento físico se debe a que en la molécula de agua los dos electrones de los dos hidrógenos están desplazados hacia el átomo de oxígeno, por lo que en la molécula aparece un polo negativo, donde está el átomo de oxígeno, debido a la mayor densidad electrónica, y dos polos positivos donde están los dos núcleos de hidrógeno, debido a la menor densidad electrónica. Las moléculas de agua son dipolos.
8
Entre los dipolos del agua se establecen fuerzas de atracción llamadas puentes de hidrógeno, formándose grupos de 3, 4 y hasta poco más de 9 moléculas. Con ello se alcanzan pesos moleculares elevados y el H2O se comporta como un líquido. Aunque son uniones débiles (30 veces más que los enlaces covalentes), el hecho de que alrededor de cada molécula de agua se dispongan otras 4 moléculas unidas por puentes de H (dos puentes con el oxígeno y uno con cada uno de los hidrógenos) permite que se forme en el agua (líquida o sólida) una estructura reticular, responsable de su comportamiento anómalo y de la peculiaridad de sus propiedades fisicoquímicas.
10
La estabilidad del enlace disminuye al aumentar la temperatura, así, en el hielo, todas las moléculas de agua están unidas por puentes de hidrógeno. Todas las restantes propiedades del agua son, pues, consecuencia de ésta. Estas agrupaciones duran fracciones de segundo (de a s), lo cual confiere al agua todas sus propiedades de fluido. En la realidad, coexisten estos pequeños polímeros de agua con moléculas aisladas que rellenan los huecos. Animación de la polaridad del agua y puentes de hidrógeno
11
Propiedades del agua Elevada fuerza de cohesión
Elevada tensión superficial Elevada fuerza de adhesión (capilaridad). Elevado calor específico. Elevado calor de vaporización. Alta conductividad. Mayor densidad en estado líquido que en estado sólido (Coeficiente de dilatación negativo). Elevada constante dieléctrica. Transparencia. Bajo grado de ionización.
12
1.- Elevada fuerza de cohesión entre sus moléculas, debida a los puentes de hidrógeno Ello explica que el agua sea un líquido prácticamente incompresible, idóneo para dar volumen a las células, provocar la turgencia de las plantas, constituir el esqueleto hidrostático de anélidos y celentéreos, etc.
13
2.- Elevada tensión superficial, es decir, que su superficie opone una gran resistencia a romperse, a que se separen sus moléculas. Esto permite que muchos organismos vivan asociados a esa película superficial y que se desplacen sobre ella.
14
3. - Elevada fuerza de adhesión (capilaridad)
3.- Elevada fuerza de adhesión (capilaridad). El fenómeno de la capilaridad depende tanto de la adhesión de las moléculas de agua a las paredes de los conductos como de la cohesión de las moléculas de agua entre sí. Esta propiedad explica, por ejemplo, que la savia bruta ascienda por los tubos capilares
15
4.- Elevado calor específico.
El agua puede absorber grandes cantidades de calor, mientras que, proporcionalmente, su temperatura sólo se eleva ligeramente. El agua emplea esta energía en romper los puentes de H. El agua se convierte en estabilizador térmico del organismo frente a los cambios bruscos de temperatura del ambiente. Su temperatura desciende con más lentitud que la de otros líquidos a medida que va liberando energía al enfriarse. Esta propiedad permite que el contenido acuoso de las células sirva de protección a las sensibles moléculas orgánicas ante los cambios bruscos de temperatura. El calor que se desprende en los procesos metabólicos no se acumula en los lugares donde se produce, sino que se difunde en el medio acuoso y se disipa finalmente hacia el medio externo.
16
El jadeo de los animales es otra forma de refrescarse
5.- Elevado calor de vaporización. Ello se debe a que para pasar del estado líquido al gaseoso hay que romper todos los puentes de hidrógeno. Los seres vivos utilizan esta propiedad para refrescarse al evaporarse el sudor. El jadeo de los animales es otra forma de refrescarse 6.- Alta conductividad. Debido a esta propiedad, el calor se distribuye fácilmente por toda la masa de agua, lo que evita la acumulación de calor en un determinado punto del organismo.
17
7.- Mayor densidad en estado líquido que en estado sólido (Coeficiente de dilatación negativo). Ello explica que el hielo flote en el agua y que forme una capa superficial termoaislante que permite la vida, bajo ella, en ríos, mares y lagos. Si el hielo fuera más denso que el agua, acabaría helándose toda el agua. Esto se explica por que los puentes de hidrógeno “congelados” mantienen las moléculas más separadas que en el estado líquido.
18
8. - Elevada constante dieléctrica
8.- Elevada constante dieléctrica. Por tener moléculas dipolares, el agua es un gran medio disolvente de compuestos iónicos, como las sales minerales, y de compuestos covalentes polares, como los glúcidos. El proceso de disolución se debe a que las moléculas de agua, al ser polares, se disponen alrededor de los grupos polares del soluto, llegando en el caso de los compuestos iónicos a desdoblarlos en aniones y cationes, que quedan así rodeados por moléculas de agua. Este fenómeno se denomina solvatación iónica.
19
Esta capacidad disolvente del agua y su abundancia en el medio natural explican que sea el vehículo de transporte (captación de sales minerales por las plantas, por ejemplo) y el medio donde se realizan todas las reacciones químicas del organismo (caso de la digestión de los alimentos)
20
9.- Transparencia. Debido a esta característica física del agua, es posible la vida de especies fotosintéticas en el fondo de mares y ríos.
21
10.- Bajo grado de ionización. De cada de moléculas de agua, sólo una se encuentra ionizada: Por eso, la concentración de iones hidronio (H30+) e hidroxilo (OH-) es muy baja, concretamente 10-7 moles por litro ([H30+] = [OH-] = 10-7). Dados los bajos niveles de H30+y de OH- , si al agua se le añade un ácido (se añade H30+) o una base (se añade OH-), aunque sea en muy poca cantidad, estos niveles varían bruscamente.
22
ClH Cl- + H+ NaOH Na+ + OH-
En los seres vivos existe siempre una cierta cantidad de hidrogeniones (H+) y de iones hidroxilo (OH-) que proceden de: La disociación del agua que proporciona los dos iones: La disociación de cuerpos con función ácida que proporcionan H+: ClH Cl- + H+ La disociación de cuerpos con básicos que proporcionan OH-: NaOH Na+ + OH-
23
Por lo tanto la acidez o alcalinidad del medio interno de un organismo dependerá de la proporción en que se encuentren los dos iones. Así será: Neutro cuando [H+]=[OH-] Ácido cuando [H+]>[OH-] Alcalino cuando [H+]<[OH-]. Acido Base H+ OH- 7 6 8 Para que los fenómenos vitales puedan desarrollarse con normalidad es necesario que la concentración de H+, que se expresa en valores de pH sea más o menos constante y próxima a la neutralidad, es decir, pH=7.
25
En las reacciones metabólicas se liberan productos tanto ácidos como básicos que varían la neutralidad si no fuera porque los organismos disponen de unos mecanismos químicos que se oponen automáticamente a las variaciones de pH. Estos mecanismos se denominan sistemas amortiguadores o sistemas tampón, y en ellos intervienen de forma fundamental las sales minerales. Lo más corriente es que el pH tienda a desplazarse hacia el lado ácido por lo que los sistemas tampón más importantes actúan evitando este desplazamiento. Un tampón está formado por una mezcla de un ácido débil y una sal del mismo ácido; el más extendido es el formado por el ácido carbónico (CO3H2) y el bicarbonato sódico (CO3HNa).
26
Supongamos que el organismo se ve sometido a un exceso de ácido clorhídrico que, en consecuencia liberará protones que harán disminuir el pH. En este momento entra en funcionamiento el sistema amortiguador y ocurre lo siguiente: 1.- La sal (bicarbonato sódico) reacciona con el ácido clorhídrico: CO3HNa + ClH NaCl + H2CO3 La sal que se forma (NaCl) es neutra y, aunque se disocie, no libera protones y, además, es habitualmente expulsada por la orina. 2.- El ácido carbónico que se ha formado podría incrementar la acidez, pero rápidamente se descompone en CO2, que se libera con la respiración, y agua que es neutra: CO3H2 CO2 + H2O En resumen, todos los hidrogeniones que podrían provocar un estado de acidez desaparecen manteniéndose el estado de neutralidad.
27
El tampón bicarbonato es común en los líquidos extracelulares, mantiene el pH en valores próximos a 7,4, gracias al equilibrio entre el ión bicarbonato y el ácido carbónico, que a su vez se disocia en dióxido de carbono y agua. El tampón fosfato es la otra solución tampón, formada por el ión PO3-4 y H3PO4, y es más común en los medios intracelulares. Otra consecuencia de la capacidad de disociación del agua es que permite que actúe como reactivo químico en las reacciones metabólicas de hidrólisis, introduciendo una molécula de agua: A-B + H2O AH + BOH El agua y los productos de ionización participan en las reacciones de hidrólisis (para dividir grandes moléculas). El proceso inverso se llama condensación (moléculas sencillas se unen para formar otras mayores) y origina o desprende moléculas de agua que se denominan agua metabólica (camellos)
28
Funciones del agua Función disolvente de las sustancias.
Función bioquímica. Función de transporte. Función estructural. Función mecánica amortiguadora. Función termorreguladora.
29
Función disolvente de las sustancias
Función disolvente de las sustancias. El agua es básica para la vida, ya que prácticamente todas las reacciones biológicas tienen lugar en el medio acuoso.
30
Función bioquímica. El agua interviene en muchas reacciones químicas, por ejemplo, en la hidrólisis (rotura de enlaces con intervención de agua) que se da durante la digestión de los alimentos, como fuente de hidrógenos en la fotosíntesis, etc.
31
Función de transporte. El agua es el medio de transporte de las sustancias desde el exterior al interior de los organismos y en el propio organismo, a veces con un gran trabajo como en la ascensión de la savia bruta en los árboles.
32
Función estructural. El volumen y forma de las células que carecen de membrana rígida se mantienen gracias a la presión que ejerce el agua interna. Al perder agua, las células pierden su turgencia natural, se arrugan y hasta pueden llegar a romperse (lisis).
33
Presión de turgencia Las paredes celulares rígidas de células vegetales, algas, bacterias y hongos hacen posible que esos organismos vivan sin reventar en un medio externo muy diluido, que contenga una concentración muy baja de solutos. Las células son hipertónicas respecto al medio. El agua tiende llenar sus vacuolas centrales y se hincha, acumulando presión, llamada presión de turgencia, contra las paredes celulares rígidas de celulosa. La pared celular puede estirarse muy poco, y se alcanza un estado de equilibrio cuando su resistencia impide que la célula se hinche más. La presión de turgencia es un factor importante en el sostén del cuerpo de las plantas herbáceas. Por este motivo, una flor se marchita cuando la presión de turgencia de sus células disminuye (las células han sufrido plasmólisis) por falta de agua.
34
Función mecánica amortiguadora
Función mecánica amortiguadora. Por ejemplo, los vertebrados poseen en sus articulaciones bolsas de líquido sinovial que evita el roce entre los huesos.
35
Función termorreguladora
Función termorreguladora. Se debe a su elevado calor específico y a su elevado calor de vaporización. Es un material idóneo para mantener constante la temperatura, absorbiendo el exceso de calor o cediendo energía si es necesario. Por ejemplo, los animales, al sudar, expulsan agua, la cual, para evaporarse, toma calor del cuerpo y, como consecuencia, éste se enfría.
36
FUNCIONES BIOLÓGICAS DEL AGUA
Aporta H+ y OH- en reacciones bioquímicas, El agua pura es capaz de disociarse en iones Capacidad de disociación iónica Mares y ríos se hielan sólo en su superficie Los puentes de hidrógeno “congelados” mantienen las moléculas más separadas Más densa líquida que sólida Mantiene forma y volumen de las células; permite cambios y deformaciones del citoplasma y el ascenso de la savia bruta Los puentes de hidrógeno mantienen juntas las moléculas de agua Alta cohesión y adhesión Transporte de sustancias y de que en su seno se den todas las reacciones metabólicas La mayoría de las sustancias polares se disuelven en ella al formar puentes de hidrógeno. Es un excelente disolvente Causa de deformaciones celulares y de los movimientos citoplasmáticos Las moléculas superficiales están fuertemente unidas a las del interior, pero no a las externas de aire. Elevada tensión superficial Para elevar su Tª ha de absorber mucho calor, para romper los puentes de H. Alto calor específico Función termorreguladora: ayuda a mantener constante la temperatura corporal de los animales homeotermos. La energía calorífica debe ser tan alta que rompa los puentes de hidrógeno. Alto calor de vaporización Medio de transporte en el organismo y medio lubricante Los puentes de hidrógeno mantienen a las moléculas unidas Líquida a Tª ambiente FUNCIÓN BIOLÓGICA DEBIDA A PROPIEDAD
37
Sales minerales Las sustancias minerales se pueden encontrar en los seres vivos de tres formas: precipitadas, disueltas o asociadas a sustancias orgánicas. 1.- Las sustancias minerales precipitadas constituyen estructuras sólidas, insolubles, con función esquelética. Por ejemplo, el carbonato cálcico en las conchas de los moluscos, el fosfato cálcico, Ca3(P04)2, y el carbonato cálcico que, depositados sobre el colágeno, constituyen los huesos, el cuarzo (SiO2) en los exoesqueletos de las diatomeas y en las gramíneas, etc. Este tipo de sales pueden asociarse a macromoléculas, generalmente de tipo proteico.
38
2. - Las sales minerales disueltas dan lugar a aniones y cationes
2.- Las sales minerales disueltas dan lugar a aniones y cationes. Los principales son: Cationes: Na+ K+ Ca2+ y Mg2+. Aniones: Cl-, S042-, PO43-, CO32-, HCO3- y NO3-. Estos iones mantienen un grado de salinidad constante dentro del organismo, y ayudan a mantener también constante su pH. Cada ion desempeña funciones específicas y, a veces, antagónicas. Por ejemplo, el K+ aumenta la turgencia de la célula, mientras que el Ca2+ la merma. Esto es debido a que el K+ favorece la captación de moléculas de agua (inhibición) alrededor de las partículas coloidales citoplasmáticas, mientras que el Ca2+ la dificulta. Otro ejemplo es el corazón de la rana, que se para en sístole si hay exceso de Ca2+, y en diástole si el exceso es de K+. El Ca2+ y el K+ son iones antagónicos. El medio interno de los organismos presenta unas concentraciones iónicas constantes. Una variación provoca alteraciones de la permeabilidad, excitabilidad y contractilidad de las células.
39
3.- Las sustancias minerales asociadas a moléculas orgánicas suelen encontrarse junto a proteínas, como las fosfoproteínas, junto a lípidos (fosfolípidos) y con glúcidos (agar-agar)
40
Funciones de las sales minerales
Las principales funciones de las sales minerales disueltas son: Estabilizar dispersiones coloidales. Mantener un grado de salinidad en el medio interno. Este grado de salinidad debe mantenerse constante. Regulación del pH y constituir soluciones amortiguadoras. Se lleva a cabo por los sistemas carbonato-bicarbonato, y también por el monofosfato-bifosfato.
41
Funciones específicas
Funciones catalíticas. Algunos iones, como el Cu+, Mn2+, Mg2+, Zn+,...actúan como cofactores enzimáticos Funciones osmóticas. Intervienen en los procesos relacionados con la distribución de agua entre el interior celular y el medio donde vive esa célula, lo que ayuda al mantenimiento del volumen celular. Generar potenciales eléctricos. Los iones de Na, K, Cl y Ca, participan en la generación de gradientes electroquímicos, imprescindibles en el mantenimiento del potencial de membrana y del potencial de acción y en la sinapsis neuronal. Regulación del volumen celular
42
Las principales funciones de las sales minerales precipitadas son:
Formar estructuras esqueléticas y de protección (carbonato cálcico, silicatos, fosfato cálcico)
43
DISOLUCIONES Y DISPERSIONES
En los seres vivos el estado líquido está constituido por dispersiones de muchos tipos de moléculas dispersas o solutos y un solo tipo de fase dispersante o disolvente, que es el agua. Los solutos pueden ser de bajo peso molecular como, por ejemplo, el cloruro sódico (PM = 58,5) y la glucosa (PM = 180), o pueden ser de elevado peso molecular (se denominan coloides), como, por ejemplo, las proteínas de tipo albúmina (PM entre y ). Las dispersiones de solutos de bajo peso molecular se denominan disoluciones verdaderas o simplemente disoluciones, y las de elevado peso molecular se denominan dispersiones coloidales
44
Animación de la difusión
Las propiedades de las disoluciones verdaderas Las propiedades de las disoluciones verdaderas que más interés tienen en Biología son la difusión, la osmosis y la estabilidad del grado de acidez o pH. Difusión. Es la repartición homogénea de las partículas de un fluido (gas o líquido) en el seno de otro, al ponerlos en contacto. Este proceso se debe al constante movimiento en que se encuentran las partículas de líquidos y gases. La absorción o disolución de oxígeno en el agua es un ejemplo de difusión. Animación de la difusión
45
Osmosis Es el paso del disolvente entre dos soluciones de diferente concentración a través de una membrana semipermeable que impide el paso de las moléculas de soluto. El disolvente, que en los seres vivos es el agua, se mueve desde la disolución más diluida a la más concentrada. Aparece un impulso de agua hacia la mas concentrada. La membrana citoplasmática es una membrana semipermeable y da lugar a diferentes respuestas frente a la presión osmótica del medio externo. Si éste es isotónico respecto al medio interno celular, es decir, tiene la misma concentración, la célula no se deforma. Si el medio externo es hipotónico (menos concentrado), la célula se hinchará por entrada de agua en su interior. Este fenómeno se llama turgencia y es observable, por ejemplo, en los eritrocitos, añadiendo agua destilada a una gota de sangre. Si el medio externo es hipertónico (más concentrado), la célula perderá agua y se arrugará, dándose un fenómeno de plasmólisis que acaba con la rotura de la membrana. Esto sucede, por ejemplo, en los eritrocitos, cuando se añade agua saturada de sal a una gota de sangre.
46
La membrana citoplasmática es una membrana semipermeable y da lugar a diferentes respuestas frente a la presión osmótica del medio externo. Si éste es isotónico respecto al medio interno celular, es decir, tiene la misma concentración, la célula no se deforma. Si el medio externo es hipotónico (menos concentrado), la célula se hinchará por entrada de agua en su interior. Este fenómeno se llama turgencia y es observable, por ejemplo, en los eritrocitos, añadiendo agua destilada a una gota de sangre. Si el medio externo es hipertónico (más concentrado), la célula perderá agua y se arrugará, dándose un fenómeno de plasmólisis que acaba con la rotura de la membrana. Esto sucede, por ejemplo, en los eritrocitos, cuando se añade agua saturada de sal a una gota de sangre.
47
Otras animaciones relacionadas:
Los procesos de osmosis explican cómo las plantas consiguen absorber grandes cantidades de agua del suelo, y por qué el agua del mar no sacia la sed, ya que al estar más concentrada que el medio intracelular provoca la pérdida de agua en las células. Animación de ósmosis Otras animaciones relacionadas:
48
Las propiedades de las dispersiones coloidales
La mayoría de los líquidos de los seres vivos son dispersiones coloidales, de ahí que sea tan importante el estudio de sus propiedades. En estas soluciones, el tamaño de las partículas del soluto es mucho mayor que en las soluciones verdaderas. Es el caso de polisacáridos, proteínas y ácidos nucleicos. Sus principales propiedades son: Efecto Tyndall Movimiento browniano Sedimentación Elevada viscosidad Elevada adsorción Diálisis Capacidad de presentarse en estado de gel
49
Efecto Tyndall. El tamaño de las partículas coloidales oscila entre una milimicra y 0,2 micras, que es el límite de observación en el microscopio óptico. Así pues, las dispersiones coloidales, al igual que las disoluciones verdaderas, son transparentes y claras. Sin embargo, si se iluminan lateralmente y sobre fondo oscuro, se observa una cierta opalescencia provocada por la reflexión de los rayos luminosos. Es algo parecido a lo que ocurre cuando un rayo de luz ilumina el polvo en una habitación a oscuras. Si la iluminación es frontal, el polvo ya no resulta apreciable.
50
Movimiento browniano. Las moléculas de los coloides se mueven continuamente, impulsadas por el movimiento browniano del agua (movimiento desordenado y continuo de vibración que tienen las partículas en suspensión). Este movimiento aumenta las probabilidades de encuentro de dos partículas reaccionantes. Sedimentación. Las dispersiones coloidales son estables en condiciones normales, pero si se someten a fuertes campos gravitatorios, se puede conseguir que sedimenten sus partículas. Ello se realiza en las ultracentrifugadoras, que pueden alcanzar las revoluciones por minuto.
51
Elevada viscosidad. La viscosidad es la resistencia interna que presenta un líquido al movimiento relativo de sus moléculas. Las dispersiones coloidales, dado el elevado tamaño de sus moléculas, son muy viscosas. Elevado poder adsorbente. La adsorción es la atracción que ejerce la superficie de un sólido sobre las moléculas de un líquido o de un gas. La misma cantidad de sustancia ejerce mayor adsorción si se encuentra finamente dividida. Ejemplo biológico de adsorción son los contactos «enzimas con sustratos»
52
Capacidad de presentarse en estado de gel
Capacidad de presentarse en estado de gel. Las dispersiones coloidales pueden presentar se en dos estados en forma de sol o estado líquido, y en forma de gel o estado semisólido. La diferencia entre ambos estados es la cantidad de agua presente. El sol tiene aspecto de líquido. El gel tiene aspecto semipastoso o gelatinoso. La transformación de sol en gel, y viceversa, está en relación con la síntesis o con la despolimerización, respectivamente, de proteínas fibrilares y permite la emisión de pseudópodos, y, por tanto, el movimiento ameboide y la fagocitosis
53
Diálisis: Es la separación de las partículas dispersas de elevado peso molecular (coloides) de las de bajo peso molecular (cristaloides), gracias a una membrana semipermeable cuyo tamaño de poro sólo deja pasar las moléculas pequeñas (agua y cristaloides), pero no las grandes. Una aplicación clínica es la hemodiálisis, que es la separación de la urea de la sangre de individuos con deficiencia renal.
54
Electroforesis: Es el transporte de las partículas coloidales gracias a la acción de un campo eléctrico a través de un gel. Generalmente se utiliza para separar las distintas proteínas que se extraen juntas en un tejido. La velocidad es mayor cuanto más alta sea su carga eléctrica global y cuanto menor sea su tamaño (peso molecular). Se suelen utilizar geles de almidón o de poliacrilamida.
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.