La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Radiation Effects  Front end electronics for the Inner Detector (IBM’s 0.13 SiGe technologies)  Rad hardness validation (Inner Detector + LAr Calorimeter)

Presentaciones similares


Presentación del tema: "Radiation Effects  Front end electronics for the Inner Detector (IBM’s 0.13 SiGe technologies)  Rad hardness validation (Inner Detector + LAr Calorimeter)"— Transcripción de la presentación:

1 Radiation Effects  Front end electronics for the Inner Detector (IBM’s 0.13 SiGe technologies)  Rad hardness validation (Inner Detector + LAr Calorimeter)  FE-IC. Characterization including Rad. Hardness  In collaboration with SiGe group (SCIPP, UPenn, BNL, LBL, …)  Low dose rate tests (ELDRS )

2 Radiation Effects  Radiation hardness of SiGe BiCMOS technologies (IHP’s 0.25 + 0.13 SiGe technologies)  Understanding radiation degradation mechanisms  RF degradation  Other devices (R, MOS, oscillators…)  Radiation degradation simulation  Modelado

3 Irradiation Results – IHP β N = β f /β 0 : Normalised Current Gain @ V BE = 0.7V Gammas Neutrons Protons

4 Irradiation bias influence Other results on radiation damage Radiation damage modeling V BE (V)  I B (A) R 2 = 0.49 Additivity of displacement and ionization: Long term annealing

5 Work plan 1: effect of interface traps @ Si/SiO 2 Base-Emitter spacer interface -- Acceptor-like ; E Nit =0.2eV above mid-gap ; Electron capture cross-section = 10 -15 cm -2 ; Hole capture cross-section = 10 -15 cm -2 (from Ma) Increase of base recombination current On good way to agreement with experimental results Increased irradiation dose Increased Nit concentration

6 Radiation Effects  DC-DC converters for efficient power distribution  LDMOS technologies evaluation. In collaboration with CERN’s microelectr. group (Federico Faccio)  Understanding degradation mechanisms  Simulation  GaN

7 Curves P-LDMOS  Device evolution at 5 different fluences

8  Figuras de mérito: Annealing neutrones FINAL Nline (final de annealing) Aumento de ΔV TH tras el annealing a T ambiente y reducción tras el annealing a 100 º C Reducción gradual de ΔR ON hasta un valor final de ~15% Reducción gradual de I D0 con el annealing hasta un factor 10 Annealing aumenta ΔV TH pero reduce la degradación en el resto de parámetros. Annealing a alta T beneficioso en todos los casos Nline

9  Figuras de mérito: Annealing neutrones FINAL Pmin (final de annealing) Aumento de ΔV TH hasta +50 mV con el annealing a 100 º C Valor final de ΔR ON vuelve a 500 % tras el annealing a 100 º C ID 0 mejora tras annealing a alta T Annealing a alta T parece ser perjudicial en general Necesario explorar la región 1x10 15 -5x10 15 Pmin

10 IHP’s LDMOS devices simulation  Initial 2D technological and electrical simulations of a N-LDMOS device (pre-irrad).  As starting point for radiation damage simulations Electric field distribution at breakdown (V G = 2.5 V and V D = 17.5 V) NLDMOS structure Electrical results:

11 - A uniform trap concentration has been considered. - The degradation of the on-state resistance has been qualitatively predicted - More insight into defects dynamics has to be achieved Simulation of Neutron Irradiation

12 GaN Satish K Dhawan Yale University

13 GaN Satish K Dhawan Yale University

14 GaN  New devices in the market from EPC http://epc-co.com/epc/ToolsandDesignSupport/ProductTraining.aspx  V B = 80 V – 100 V  High frecuency  smaller inductor  Dispositivos “normaly-off” & “enhancement mode”   MOS-like  Rad-hardness??

15

16 Colaborar con Valencia  Hay cosas que sólo pueden pasar allí…


Descargar ppt "Radiation Effects  Front end electronics for the Inner Detector (IBM’s 0.13 SiGe technologies)  Rad hardness validation (Inner Detector + LAr Calorimeter)"

Presentaciones similares


Anuncios Google