La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

PPTCES020MT21-A16V1 Clase Resolución de problemas en los racionales MT-21.

Presentaciones similares


Presentación del tema: "PPTCES020MT21-A16V1 Clase Resolución de problemas en los racionales MT-21."— Transcripción de la presentación:

1 PPTCES020MT21-A16V1 Clase Resolución de problemas en los racionales MT-21

2 Resumen de la clase anterior Recordemos la clase anterior… -¿Cuáles son los números racionales? -¿Qué estrategia conoces para transformar un número decimal periódico a fracción? -¿En qué consiste la simplificación y amplificación de una fracción? ¿Qué ocurre con el valor de la fracción cuando se simplifica o amplifica?

3 Aprendizajes esperados Comprender que los números racionales permiten resolver problemas sin solución en naturales y enteros. Reconocer problemas donde sea pertinente operar números racionales. Extraer información en la resolución de problemas numéricos, planteando el problema numérico y aplicando estrategias y recursos de resolución. Identificar regularidades numéricas, reconociendo distintas operaciones que permitan establecerlas.

4 Pregunta oficial PSU 7. Una cuerda de 243 cm se corta sucesivamente, de manera que después de cada corte se escoge la mayor cuerda resultante, cuya longitud es de la longitud de la cuerda anterior. ¿Cuál es la longitud de la mayor cuerda resultante luego de cinco cortes? Fuente : DEMRE - U. DE CHILE, Modelo Proceso de admisión 2016. A) 32,4 cm B) 72,9 cm C) 32 cm D) 40,5 cm E) 122 cm ¿Podrías explicar con tus palabras el problema ? ¿Qué se quiere decir con “sucesivamente” ?

5 1.Resolución de problemas 2.Regularidades numéricas 3.Cuadrados mágicos

6 1. Resolución de problemas 1.1 Método de resolución de problemas Una de las estrategias para responder correctamente diversas situaciones es el método de resolución de problemas, que consta de cuatro etapas que facilitan la resolución de este: 1. Identificar 2. Planificar 3. Ejecutar 4. Evaluar Comprender el problema, reconocer la(s) incógnita(s) y recopilar datos. Elaborar un plan para resolverlo empleando herramientas matemáticas. Poner en práctica el plan, utilizando la información recopilada en el paso 1. Comprobar que los resultados sean correctos y coherentes en el contexto.

7 1. Resolución de problemas Un grupo de 15 personas se reunió a comer en un restaurante. Diez comieron el menú del día y 5 solo ensaladas. Al día siguiente, doce de ellos amanecieron enfermos. Si los de los que consumieron el menú son parte de los enfermos, ¿qué fracción de los que comieron solo ensaladas amaneció enfermo?. 1.1 Método de resolución de problemas Paso 1: Identificar ¿Qué nos están preguntando? ¿Qué datos tenemos para resolver el problema? Paso 2: Planificar ¿Qué podemos hacer con los datos entregados? ¿Cuál será nuestra estrategia? Paso 3: Ejecutar ¡Llevemos a cabo nuestra estrategia! Paso 4: Evaluar ¿Tiene sentido nuestro resultado en relación a la pregunta?

8 En un viaje Pedro se traslada 800 km. La cuarta parte del viaje lo realiza en bus. Las tres quintas partes del resto lo hace en avión y lo que queda en tren. ¿Cuántos kilómetros anduvo Pedro en tren? A) 120 km B) 240 km C) 320 km D) 360 km E) 480 km Fuente : DEMRE - U. DE CHILE, Modelo Proceso de admisión 2016. 1.2 Ejemplo Más información en las páginas 8 y 18 de tu libro. ¡AHORA TÚ! (5 minutos) Ejercicios 2 y 5 de tu guía. ALTERNATIVA CORRECTA B 1. Resolución de problemas Método de resolución de problemas.

9 Conjunto de números que siguen un patrón establecido. Ejemplo 1: En la secuencia: ¿Qué procedimiento debes realizar para obtener el 7° término? 2. Regularidades numéricas 2.1 Sucesiones Si la secuencia se puede reescribir de la siguiente forma: + 10 ¿Qué expresión permite determinar el n-ésimo término?

10 ¿Cuál de las siguientes expresiones describe todos los términos de la secuencia, para los números enteros positivos n, desde el 1 hasta el 6? Fuente : DEMRE - U. DE CHILE, Proceso de admisión 2014. 2.2 Ejemplo Más información en las páginas 18 y 19 de tu libro. ¡AHORA TÚ! (5 minutos) Ejercicios 9 y 25 de tu guía. ALTERNATIVA CORRECTA C 2. Regularidades numéricas

11 3. Cuadrado mágico Son cuadrículas de 3 × 3, 4 × 4, 5 × 5 o en general de n × n, que se distribuyen de tal forma que cada fila, columna y diagonal suman lo mismo. Ejemplo: 5 − 40 6 1 7 − 5 − 3 3.1 Definición Más información en la página 19 de tu libro. ¡AHORA TÚ! (5 minutos) Ejercicios 19 y 21 de tu guía.

12 Pregunta oficial PSU 7. Una cuerda de 243 cm se corta sucesivamente, de manera que después de cada corte se escoge la mayor cuerda resultante, cuya longitud es de la longitud de la cuerda anterior. ¿Cuál es la longitud de la mayor cuerda resultante luego de cinco cortes? Fuente : DEMRE - U. DE CHILE, Modelo Proceso de admisión 2016. A) 32,4 cm B) 72,9 cm C) 32 cm D) 40,5 cm E) 122 cm ALTERNATIVA CORRECTA C

13 Síntesis de la clase Recordemos… -¿En qué consiste el método de resolución de problemas presentado en la clase? -Los números pares son una sucesión. ¿Por qué?

14 Prepara tu próxima clase En la próxima sesión, estudiaremos Potencias

15 Tabla de corrección NºClaveUnidad temáticaHabilidad 1 BNúmeros RacionalesAplicación 2BNúmeros RacionalesAplicación 3BNúmeros RacionalesAplicación 4BNúmeros RacionalesAplicación 5ANúmeros RacionalesAplicación 6 DNúmeros RacionalesASE 7CNúmeros RacionalesComprensión 8CNúmeros RacionalesAplicación 9 CNúmeros RacionalesASE 10CNúmeros RacionalesASE 11BNúmeros RacionalesASE 12ANúmeros RacionalesASE

16 Tabla de corrección NºClaveUnidad temáticaHabilidad 13 BNúmeros RacionalesASE 14BNúmeros RacionalesASE 15CNúmeros RacionalesASE 16BNúmeros RacionalesASE 17CNúmeros RacionalesASE 18ANúmeros RacionalesASE 19CNúmeros RacionalesComprensión 20ENúmeros RacionalesAplicación 21ENúmeros RacionalesASE 22DNúmeros RacionalesAplicación 23CNúmeros RacionalesASE 24CNúmeros RacionalesASE 25DNúmeros RacionalesASE

17 Propiedad Intelectual Cpech RDA: 186414 ESTE MATERIAL SE ENCUENTRA PROTEGIDO POR EL REGISTRO DE PROPIEDAD INTELECTUAL. Equipo Editorial Matemática

18 Cuenta regresiva Volver a: 1. Resolución de problemasResolución de problemas 2. Regularidades numéricasRegularidades numéricas 3. Cuadrados mágicos 4. Pregunta oficial PSUCuadrados mágicosPregunta oficial PSU


Descargar ppt "PPTCES020MT21-A16V1 Clase Resolución de problemas en los racionales MT-21."

Presentaciones similares


Anuncios Google