La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

P.V = n. R. T LEYES DE LOS GASES.

Presentaciones similares


Presentación del tema: "P.V = n. R. T LEYES DE LOS GASES."— Transcripción de la presentación:

1 P.V = n. R. T LEYES DE LOS GASES

2 Leyes de los gases Estado gaseoso Medidas en gases Leyes de los gases
Ley de Avogadro Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac (2ª) Ecuación general de los gases ideales Teoría cinética de los gases Modelo molecular para la ley de Avogadro Modelo molecular para la ley de Boyle y Mariotte Modelo molecular para la ley de Charles y Gay-Lussac Apéndice: Materiales premiados CNICE páginas Web “Leyes Gases”

3 Estados de la materia GAS LÍQUIDO SÓLIDO

4 Estado gaseoso En estado gaseoso las partículas son independientes unas de otras, están separadas por enormes distancias con relación a su tamaño. Las partículas de un gas se mueven con total libertad y tienden a ocupar todo el volumen del recipiente que los contiene. Las partículas de un gas se encuentran en constante movimiento en línea recta y cambian de dirección cuando chocan entre ellas y con las paredes del recipiente. Para medir la presión de los gases encerrados en recipientes se utilizan los manómetros.

5 Estado gaseoso Cl2 gaseoso HCl y NH3 gaseosos

6 Medidas en gases Un gas queda definido por cuatro variables:
Cantidad de sustancia Volumen Presión Temperatura moles l, m3, … atm, mm Hg o torr, Pa, bar ºC, K Unidades: 1 atm = 760 mm Hg = 760 torr = 1,01325 bar = Pa K = ºC + 273 1l = 1dm3

7 Ley de Avogadro Leyes de los gases
El volumen de un gas es directamente proporcional a la cantidad de materia (número de moles), a presión y temperatura constantes. A presión y temperatura constantes, volúmenes iguales de un mismo gas o gases diferentes contienen el mismo número de moléculas. frances V (L) n V α n (a T y P ctes) Amedeo Avogadro ( ) Químico y físico italiano. Nació el 9 de junio de 1776 en Turín, Italia y murió el 9 de julio de 1856. En 1792 se graduó como doctor en derecho canónico, pero no ejerció. En vez de ello, mostró verdadera pasión por la física y la química, y una gran destreza para las matemáticas. Recapacitando sobre el descubrimiento de Charles (publicado por Gay -Lussac) de que todos los gases se dilatan en la misma proporción con la temperatura decidió que esto debía implicar que cualquier gas a una temperatura dada debía contener el mismo número de partículas por unidad de volumen. Avogadro tuvo la precaución de especificar que las partículas no tenían por qué ser átomos individuales sino que podían ser combinaciones de átomos (lo que hoy llamamos moléculas). Con esta consideración pudo explicar con facilidad la ley de la combinación de volúmenes que había sido anunciada por Gay-Lussac y, basándose en ella, dedujo que el oxígeno era 16 veces más pesado que el hidrógeno y no ocho como defendía Dalton en aquella época. Enunció la llamada hipótesis de Avogadro: iguales volúmenes de gases distintos contienen el mismo número de moléculas, si ambos se encuentran a igual temperatura y presión. Ese número, equivalente a 6,022· 1023, es constante, según publicó en Como ha ocurrido muchas veces a lo largo de la historia las propuestas de Avogadro no fueron tomadas en cuenta, es más, Dalton, Berzelius y otros científicos de la época despreciaron la validez de su descubrimiento y la comunidad científica no aceptó de inmediato las conclusiones de Avogadro por tratarse de un descubrimiento basado en gran medida en métodos empíricos y válido solamente para los gases reales sometidos a altas temperaturas pero a baja presión. Sin embargo, la ley de Avogadro permite explicar por qué los gases se combinan en proporciones simples. Fue su paisano Cannizaro quién, 50 años más tarde, se puso a su favor y la hipótesis de Avogadro empezó a ser aceptada. A partir de entonces empezó a hablarse del número Avogadro. V = k.n

8 Modelo Molecular para la Ley de Avogadro
Teoría cinética de los gases Modelo Molecular para la Ley de Avogadro V = K n (a T y P ctes) Amedeo Avogadro ( ) Químico y físico italiano. Nació el 9 de junio de 1776 en Turín, Italia y murió el 9 de julio de 1856. En 1792 se graduó como doctor en derecho canónico, pero no ejerció. En vez de ello, mostró verdadera pasión por la física y la química, y una gran destreza para las matemáticas. Recapacitando sobre el descubrimiento de Charles (publicado por Gay -Lussac) de que todos los gases se dilatan en la misma proporción con la temperatura decidió que esto debía implicar que cualquier gas a una temperatura dada debía contener el mismo número de partículas por unidad de volumen. Avogadro tuvo la precaución de especificar que las partículas no tenían por qué ser átomos individuales sino que podían ser combinaciones de átomos (lo que hoy llamamos moléculas). Con esta consideración pudo explicar con facilidad la ley de la combinación de volúmenes que había sido anunciada por Gay-Lussac y, basándose en ella, dedujo que el oxígeno era 16 veces más pesado que el hidrógeno y no ocho como defendía Dalton en aquella época. Enunció la llamada hipótesis de Avogadro: iguales volúmenes de gases distintos contienen el mismo número de moléculas, si ambos se encuentran a igual temperatura y presión. Ese número, equivalente a 6,022· 1023, es constante, según publicó en Como ha ocurrido muchas veces a lo largo de la historia las propuestas de Avogadro no fueron tomadas en cuenta, es más, Dalton, Berzelius y otros científicos de la época despreciaron la validez de su descubrimiento y la comunidad científica no aceptó de inmediato las conclusiones de Avogadro por tratarse de un descubrimiento basado en gran medida en métodos empíricos y válido solamente para los gases reales sometidos a altas temperaturas pero a baja presión. Sin embargo, la ley de Avogadro permite explicar por qué los gases se combinan en proporciones simples. Fue su paisano Cannizaro quién, 50 años más tarde, se puso a su favor y la hipótesis de Avogadro empezó a ser aceptada. A partir de entonces empezó a hablarse del número Avogadro. La adición de más partículas provoca un aumento de los choques contra las paredes, lo que conduce a un aumento de presión, que desplaza el émbolo hasta que se iguala con la presión externa. El proceso global supone un aumento del volumen del gas.

9 Transformación isotérmica
Leyes de los gases Ley de Boyle y Mariotte El volumen de un gas es inversamente proporcional a la presión que soporta (a temperatura y cantidad de materia constantes). V α 1/P (a n y T ctes) V = k/P Transformación isotérmica Robert Boyle ( ) Nacido en 1627, el menor de los catorce hijos del conde de Cork, estudió en las mejores universidades de Europa. Descubrió los indicadores, sustancias que permiten distinguir los ácidos de las bases. En 1659, con la ayuda de Robert Hooke, descubrió la ley que rige el comportamiento de los muelles, perfeccionó la bomba de aire para hacer el vacío que se utilizó en la minería para eliminar el agua de las galerías en las que trabajan los mineros. Atacó a la Alquimia y a los alquimistas, que anunciaban que podían convertir cualquier metal en oro. Definió la Química como una ciencia y enunció la primera definición moderna de elemento químico, como sustancia que no es posible descomponer en otras. En 1661 publicó el primer libro moderno de química El Químico Escéptico en el que explicaba la mayoría de sus descubrimientos. Fue miembro de la Royal Society, institución que perdura en la actualidad, y participó activamente en sus reuniones hasta su fallecimiento. En 1660, en una obra titulada Sobre la Elasticidad del Aire anunció su descubrimiento sobre la relación entre el volumen de un gas y su presión. Parece que Boyle no especificó en sus trabajos que sus experiencias de la relación entre el volumen y presión los realiza a temperatura constante, quizá porque lo hizo así y lo dio por supuesto. Lo cierto es que, en defensa del rigor científico, hay que esperar a que en 1676 otro físico, el francés Edme Mariotte ( ), encuentre de nuevo los mismos resultados y aclare que la relación PV=constante es sólo válida si se mantiene constante la temperatura. Por eso la ley de Boyle está referenciada en muchas ocasiones como Ley de Boyle y Mariotte. Edme Mariotte ( ) (Dijon, Francia, 1620-París, 1684) Físico francés. Padre prior del monasterio de Saint-Martin-sous-Beaune, fue miembro fundador en 1666 de la Academia de las Ciencias de París. En su obra Discurso sobre la naturaleza del aire introdujo la posibilidad de pronosticar el tiempo atmosférico basándose en las variaciones barométricas. En 1676 formuló la ley de Boyle de forma independiente y más completa que éste, al establecer que la presión y el volumen de un gas son inversamente proporcionales si se mantiene constante su temperatura, principio que actualmente se conoce como ley de Boyle-Mariotte. En sus estudios acerca de la fisiología de las plantas, observó que en éstas la presión de la savia podría compararse a la de la sangre en los animales. gráfica

10 Leyes de los gases Ley de Boyle y Mariotte

11 Modelo Molecular para la Ley de Boyle y Mariotte
Teoría cinética de los gases Modelo Molecular para la Ley de Boyle y Mariotte V = K 1/P (a n y T ctes) El aumento de presión exterior origina una disminución del volumen, que supone el aumento de choques de las partículas con las paredes del recipiente, aumentando así la presión del gas.

12 Transformación isobárica
Leyes de los gases Ley de Charles y Gay-Lussac (1ª) El volumen de un gas es directamente proporcional a la temperatura absoluta (a presión y cantidad de materia constantes). V α T (a n y P ctes) El volumen se hace cero a 0 K Transformación isobárica gráfica Joseph Louis Gay-Lussac ( ) Químico y físico francés, nacido el 6 de diciembre de 1778, en Saint-Léonard-de-Noblat, y fallecido el 9 de mayo de 1850, en París. Además de ocupar cargos políticos de importancia, Gay-Lussac fue catedrático de Física (a partir de 1808) en la Universidad de la Sorbona, así como catedrático de Química (a partir de 1809) en el Instituto Politécnico de París. En 1802 publicó los resultados de sus experimentos que, ahora conocemos como Ley de Gay-Lussac. Esta ley establece, que, a volumen constante, la presión de una masa fija de un gas dado es directamente proporcional a la temperatura Kelvin. En el campo de la física llevó a cabo, en 1804, dos ascensiones en globo, hasta altitudes de metros, en las que estudió la composición de las capas altas de la atmósfera y el magnetismo terrestre. Entre 1805 y 1808 dic a conocer la ley de los volúmenes de combinación, que afirma que los volúmenes de los gases que intervienen en una reacción química (tanto de reactivos como de productos) están en la proporción de números enteros sencillos. En relación con estos estudios, investigó junto con el naturalista alemán Alexander von Humboldt, la composición del agua, descubriendo que se compone de dos partes de hidrógeno por una de oxígeno. En 1811 dic forma a la ley que Charles había descubierto en 1787 sobre la relación entre el volumen y la temperatura, pero que había quedado sin publicar. Este mismo año, el químico francés Courtois, por medio de una reacción química produjo un gas de color violeta que Gay-Lussac identificó como un nuevo elemento y le dio el nombre de yodo, que en griego significa violeta. Estudió también el ácido cianhídrico así como el gas de hulla. En el año 1835 creó un procedimiento para la producción de ácido sulfúrico basado en el empleo de la torre llamada de Gay-Lussac. Gracias a sus mediciones químicas de precisión y a sus procedimientos exactos de trabajo, logró obtener varios elementos químicos y establecer las bases del análisis volumétrico convirtiéndolo en una disciplina independiente. En la lucha de prestigio entre Francia e Inglaterra, Napoleón suministró fondos a Gay-Lussac para que construyera una batería eléctrica mayor que la de Davy, y así encontrar nuevos elementos. La batería no fue necesaria, pues Gay-Lussac y Thenard empleando el potasio descubierto por Davy, aislaron el boro sin necesidad de la electricidad. Al tratar óxido de boro con potasio se produjo el elemento boro. En 1809 Gay-Lussac trabajó en la preparación del potasio e investigó las propiedades del cloro. En el campo de la industria química desarrolló mejoras en varios procesos de fabricación y ensayo. En 1831 fue elegido miembro de la Cámara de los Diputados y en 1839 del Senado. Jacques Charles ( ) Jacques Alexandre César Charles, químico, físico y aeronauta francés, nació en Beaugency (Loiret) el 2 de noviembre de 1746 y falleció en París el 7 de abril de 1823. Al tener noticias de las experiencias de los hermanos Montgolfier con su globo aerostático propuso la utilización del hidrógeno, que era el gas más ligero que se conocía entonces, como medio más eficiente que el aire para mantener los globos en vuelo. En 1783 construyó los primeros globos de hidrógeno y subió él mismo hasta una altura de unos 2 km, experiencia que supuso la locura por la aeronáutica que se desató en la época. Su descubrimiento más importante fue en realidad un redescubrimiento ya que en 1787 retomó un trabajo anterior de Montons y demostró que los gases se expandían de la misma manera al someterlos a un mismo incremento de temperatura. El paso que avanzó Charles fue que midió con más o menos exactitud el grado de expansión observó que por cada grado centígrado de aumento de la temperatura el volumen del gas aumentaba 1/275 del que tenía a 0°C . Esto significaba que a una temperatura de -275 °C el volumen de un gas sería nulo (según dicha ley) y que no podía alcanzarse una temperatura más baja. Dos generaciones más tarde Kelvin fijó estas ideas desarrollando la escala absoluta de temperaturas y definiendo el concepto de cero absoluto. Charles no público sus experimentos y hacia 1802 Gay-Lussac publicó sus observaciones sobre la relación entre el volumen y la temperatura cuando se mantiene constante la presión por lo que a la ley de Charles también se le llama a veces ley de Charles y Gay-Lussac. A P = 1 atm y T = 273 K, V = 22.4 l para cualquier gas. V = k.T

13 Leyes de los gases Ley de Charles y Gay-Lussac (1ª)

14 Transformación isócora
Leyes de los gases Ley de Charles y Gay-Lussac (2ª) La presión de un gas es directamente proporcional a la temperatura absoluta (a volumen y cantidad de materia constantes). P a T (a n y V ctes) P (atm) T (K) Transformación isócora P = k.T

15 Leyes de los gases Ley de Charles y Gay-Lussac (2ª)

16 Modelo Molecular para la Ley de Charles y Gay-Lussac
Teoría cinética de los gases Modelo Molecular para la Ley de Charles y Gay-Lussac V = K T (a n y P ctes) Al aumentar la temperatura aumenta la velocidad media de las partículas, y con ello el número de choques con las paredes. Eso provoca un aumento de la presión interior que desplaza el émbolo hasta que se iguala con la presión exterior, lo que supone un aumento del volumen del gas.

17 Leyes de los gases (a) Al aumentar la presión a volumen constante, la temperatura aumenta (b) Al aumentar la presión a temperatura constante, el volumen disminuye (c) Al aumentar la temperatura a presión constante, el volumen aumenta (d) Al aumentar el número de moles a temperatura y presión constantes, el volumen aumenta n _ p

18 Ecuación general de los gases ideales
Leyes de los gases Ecuación general de los gases ideales Combinación de las tres leyes: P Boyle: V = k’ ΔT= 0, Δn= 0 = P k’k’’k’’’ n T V = R n T Charles: V = k’’. T ΔP= 0, Δn= 0 Avogadro: V = k’’’. n ΔP= 0, ΔT= 0 Ley de los gases ideales: PV = nRT R se calcula para: n = 1 mol P = 1 atm V = 22,4 l T = 273 K T P.V = P´. V´ R = atm L/ mol K R = 8.31 J/ mol K = cal /mol K

19 Teoría cinética de los gases
Entre 1850 y 1880 Maxwell, Clausius y Boltzmann desarrollaron esta teoría, basada en la idea de que todos los gases se comportan de forma similar en cuanto al movimiento de partículas se refiere. Boltzmann Clausius Teoría cinética de los gases. Modelo molecular: Los gases están constituidos por partículas (átomos o moléculas) separadas por espacios vacíos. Las partículas de un gas están en constante movimiento en línea recta, al azar en todas la direcciones. El volumen total de las partículas de un gas es muy pequeño (y puede despreciarse) en relación con el volumen del recipiente que contiene el gas. Las partículas de un gas chocan entre sí y con las paredes del recipiente que lo contiene. Es tos choque se suponen elásticos, es decir, las partículas no ganan ni pierden energía cinética en ellos. La presión del gas se produce por las colisiones de las partículas con las paredes del recipiente. La energía cinética de las partículas aumenta con la temperatura del gas. Las fuerzas atractivas y repulsivas entre las partículas se pueden considerar despreciables.

20 Volumen molar de un gas El volumen de un mol de cualquier sustancia gaseosa es 22,4 l en condiciones normales

21 La constante de Boltzman
APÉNDICE T P.V = P´. V´ La constante de Boltzman

22 Ley de los gases ideales:
PV = nRT En donde n es el número de moles átomos o moléculas. El valor de R se midió como: Podemos reescribir la ecuación en términos del número de moles asi: Si tenemos n átomos o moléculas, tendremos nX6.023X1023 moles En donde k= 1.381X10-23 J/K y N el numero de moléculas ó átomos R = atm L/ mol K R = 8.31 J/ mol K = cal /mol K

23 Ley de los gases ideales:
PV = nRT Una muestra de oxígeno se mantiene a una Presión de 1.3X104 Pa. Su volumen es de m3 a 20ºC. La muestra se expande a un volumen m3 cuando se calienta. Cuál es la temperatura final: La temperatura inicial es de 20ºC=( )K La constante dice que Modelo : Ley de Charles y Gay-Lussac V = K T (a n y P ctes) siempre en la escala de Kelvin!!

24 Una muestra de dióxido de carbono (CO2) ocupa un volumen 0
Una muestra de dióxido de carbono (CO2) ocupa un volumen m3 a una presión de 1.00 X104 Pa y a temperatura 305K cual será la masa de la muestra. De la ley de gases ideales 1 molecula de CO2 tiene 1 atomo de carbón (la masa son 12 U) y tiene 2 oxígenos (la masa es de 16 U), luego la masa es de: m= (12+ 2X16)1.66X10-27 kg=7.3X10-26 kg Por lo tanto la masa de la muestra es:

25 RELACION ENTRE TEMPERATURA Y LA ENERGIA CINÉTICA INTERNA EN UN GAS IDEAL
Se puede mostrar que la presión ejercida por un gas ideal de N moléculas cada una de masa m, en un volumen V esta dada por En donde es el valor promedio de la rapidez al cuadrado, de todas las moléculas en el volumen. De los gases ideales por lo tanto

26 RELACION ENTRE TEMPERATURA Y LA ENERGIA CINÉTICA INTERNA EN UN GAS IDEAL
Se puede mostrar que la presión ejercida por un gas ideal de N moléculas cada una de masa m, en un volumen V esta dada por En donde es el valor promedio de la rapidez al cuadrado, de todas las moleculas en el volumen. De los gases ideales por lo tanto

27 Se puede mostrar que la presión ejercida por un gas ideal de N moléculas cada una de masa m, en un volumen V esta dada por En donde es el valor promedio de la rapidez al cuadrado, de todas las moléculas en el volumen. De los gases ideales por lo tanto Relación entre la temperatura y la energía cinética interna del sistema LA TEMPERATURA ES UNA MEDIDA DE LA ENERGIA CINETICA DE LAS MOLECULAS DEL GAS Energía promedio

28 Que tan rápido se mueve una molécula típica en el aire a temperatura del medio ambiente 20ºC
Los átomos de Nitrógeno tienen una masa de 14 unidades de masa. En el medio ambiente la molécula es diatómica: Una molécula típica de aire se mueve 2 veces más rápido que un yet Calcular la rapidez promedio cuadrática, de las moléculas de H en la atmosfera de Júpiter (cuando la temperatura es de 120 K)

29 La distribución de Maxwell

30 Descripción mecánica El estado mecánico de cada partícula se define por su posición y su velocidad:

31 La función de distribución

32 La distribución de Maxwell

33 La energía interna de un gas ideal monoatómico
Los movimientos moleculares que causan la presión en un gas ideal son aleatorios en la dirección y no resultan en cualquier movimiento neto del gas. La energía total se asocia con estos movimientos aleatorios y se denomina energía térmica interna. En general la energía interna incluye otras formas de energía cinética y potencial de las moléculas! La energía térmica interna es una distribución aleatoria entre las moléculas.

34 La energía interna de un gas ideal monoatómico
LA ENERGIA INTERNA DE UN SISTEMA ES LA ENERGIA TOTAL DE SUS MOLECULAS EN UN SISTEMA DE REFERENCIA EN EL CUAL EL CENTRO DE MASA DEL SISTEMA ESTA EN REPOSO. EN UN GAS IDEAL MONOATOMICO LA ESTRUCTURA DE LOS ATOMOS NO ES IMPORTANTE Y SOLO CONTRIBUYE LA ENERGIA CINETICA TRASLACIONAL: La energía interna es proporcional al número de átomos en el sistema: La temperatura mide la energía por átomo y es independiente del número total de átomos.

35 La energía interna de un gas ideal monoatómico
EJEMPLO Un cilindro contiene 0.10 kg de gas de Ar a T=270 K. El se trasporta en un aeroplano que vuela a 180 m/s. Halle la energía interna del gas de Ar. Muestre que la energía cinética total del gas debe separarse en dos partes (la energía cinética interna y la energía cinética del volumen). Muestre que la energía cinética interna es la misma a cuando el gas está en reposo. Compare

36 La energía interna de un gas ideal monoatómico
El Ar es un gas ideal con átomos de masa u. Para hallar la energía cinética total del gas sumamos la energía de los átomos individuales Si la velocidad del aeroplano es Voy un átomo del gas tiene la velocidad aleatoria Valeatoria, entonces la velocidad total del átomo es V=Vo+ Valeatoria, entonces

37 La energía interna de un gas ideal monoatómico
La energia total del sistema Lo cual corresponde a Energía cinética correspondiente al movimiento del centro de masa (mov. en bloque) Energía cinética correspondiente al movimiento aleatorio y no depende de la velocidad del aeroplano

38 La energía interna de un gas ideal monoatómico
La energia total del sistema Lo cual corresponde a Cuando el avión esta en reposo La relación entre las dos energías

39 La energía interna de un gas ideal monoatómico
Con Luego la energía cinética del bloque del gas, debido a la velocidad del aeroplano es solamente el 20% de la energía interna

40 PRIMERA LEY DE LA TERMODINAMICA
Es una extensión del teorema de energía=trabajo conocida como primera Ley de la termodinámica. Para aumentar la temperatura de un sistema le debemos suministrar energía. La temperatura se puede aumentar haciendo trabajo sobre el. Cuando el café caliente se vierte sobre una taza, el café aumenta la energía interna de la taza calentándola. Las moléculas del café tienen más energía en promedio que las moléculas de la taza y transfieren energía alas moléculas de la taza mediante colisiones Cuando la energía se transfiere de un sistema a otro, como resultado de la diferencia de la temperatura de los dos, esto se llama transferencia de calor. CALOR es la cantidad de energía que se trasfiere mediante un gran número de eventos aleatorios

41 PRIMERA LEY DE LA TERMODINAMICA
La transferencia de calor es un proceso y no involucra una nueva forma de energía La transferencia de calor aumenta la energía cinética interna del sistema Estamos usando “calor” como una descripción de un proceso de transferencia. Los sistemas no contienen más calor que el trabajo que contiene. Los sistemas contienen energía interna que debe ser cambiada mediante transferencia de calor o haciendo trabajo. La primera ley de la termodinámica expresa la conservación de la energía en cualquier proceso El incremento en la energía de un sistema corresponde a la transferencia de calor al sistema + el trabajo que se hace sobre el sistema

42 PRIMERA LEY DE LA TERMODINAMICA
Una máquina transforma la energía térmica a otras más usuales, entonces W se usa para describir el trabajo hecho por un sistema, mientras que Q es el calor agregado al sistema. Cuando el trabajo se hace sobre el sistema entonces W es negativo En termodinámica generalmente se trabaja en el sistema de referencia del CM, luego toda la energía es térmica interna. W Q W es positiva cuando el sistema hace trabajo Q es positiva cuando el calor es transferido al sistema

43 PRIMERA LEY DE LA TERMODINAMICA
En 1843 Joule demostró la equivalencia entre energía mecánica y térmica. Usó una masa que cae para hacer girar unos pedales en el interior de un contenedor de agua aislado, y midió el incremento de la temperatura en agua. Si la masa que cae es de 5 kg de plomo y cae 10m cual es el incremento en la energía interna de los pedales en el agua

44 PRIMERA LEY DE LA TERMODINAMICA
Como no hay transferencia de calor Q=0 y el cambio en la energía interna es Cuando la energía se transfiere de un sistema a otro, como resultado de la diferencia de la temperatura de los dos, esto se llama transferencia de calor. Aquí no hay transferencia de calor!


Descargar ppt "P.V = n. R. T LEYES DE LOS GASES."

Presentaciones similares


Anuncios Google