La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

FENÓMENOS ASOCIADOS AL

Presentaciones similares


Presentación del tema: "FENÓMENOS ASOCIADOS AL"— Transcripción de la presentación:

1 FENÓMENOS ASOCIADOS AL
CAMPO ELÉCTRICO EN LÍNEAS DE TRANSMISIÓN POR: ESTEBAN VELILLA

2 INDICE Objetivos Metodologías de cálculo para campo eléctrico, Ruido Audible y Radio Interferencia. Ejemplos de evaluación Conclusiones

3 OBJETIVOS Implementar las metodologías para el calculo de campos eléctricos (CE), Ruido Audible (RA) y Radio Interferencia (RI) en LT. Poder evaluar el comportamiento tanto del campo eléctrico en las cercanías de la LT, como las posibles afectaciones que se puedan generar. Obtener cálculos confiables que puedan ser comparables con mediciones.

4 CAMPO ELÉCTRICO

5 DEFINICIÓN DE CAMPO ELÉCTRICO
Campo eléctrico, es el espacio que rodea a objetos cargados eléctricamente. Pueden ser estáticos, establecidos por cargas fijas, o variables en el tiempo, por voltajes alternantes. La intensidad de campo eléctrico E, se expresa en voltios por metro, V/m.

6 CAMPO ELÉCTRICO DEPENDE DE: Tensión de operación de la línea
Separación de fases Número y diámetro de conductores por haz Posición del haz de conductores en la geometría de la LT Cables de guarda Tipo de circuito

7 CONSIDERACIONES EN LA METODOLOGIA MARKT Y MENGELE
El suelo es supuesto una superficie plana y conductora los conductores son considerados cilíndricos Se desprecia la influencia de estructuras u otros objetos en la extremidades No existe carga libre espacial

8 RELACIÓN MATRICIAL El problema de contornos, se resuelve a partir de la geometría de la LT y de la especificación de los potenciales en los conductores

9 DESARROLLO DE LA METODOLOGÍA
= matriz columna compleja de orden 1*n, es la carga de cada conductor. V= matriz compleja de orden 1*n, y son los potenciales de cada conductor equivalente en relación a tierra. P= matriz real de orden n*n, y representa los coeficientes de potencial de Maxwell.

10 METODOLOGIA DE MARKT Y MENGELE
N= numero de subconductores r= radio de cada subconductor R= radio del haz S= distancia entre los subconductores del mismo haz

11 VARIACIÓN DEL DIÁMETRO EQUIVALENTE
Número de subconductores Distancia entre subconductores (cm) Diámetro del haz (cm) 2 45.72 3 52.80 4 64.70 6 91.40 8 101.60

12 MATRIZ DE COEFICIENTES DE MAXWELL

13 IMPORTANCIA DE LOS GRADIENTES SUPERFICIALES
Factor importante en relación al efecto corona y las perdidas causadas por este efecto Radio interferencia (RI) y ruido audible (RA) Selección y dimensiones de los conductores

14 CAMPO ELÉCTRICO POR SUBCONDUCTOR
Debido a su propia carga por unidad de longitud

15 GRADIENTE EN LA SUPERFICIE
DE LOS CONDUCTORES D es el diámetro equivalente del haz d es el diámetro del conductor

16 CAMPO RADIAL GENERADO Emax Req P 2r Emax Emax Emax

17 CAMPO ELÉCTRICO VECTORIAL

18 LA VARIACIÓN DE PARAMETROS EN LT

19 VARIACIÓN DE GRADIENTES EN LÍNEA HORIZONTAL

20 GEOMETRÍA DE LA LÍNEA Coordenada (X) (Y) Diámetro (cm) Conductor -5.45
31.00 2.960 Fase A 5.15 34.50 Fase B -5.15 38.00 Fase C 2.60 41.00 0.820 Ground -2.60

21 CE EN UNA LÍNEA ASIMETRICA A DIFERENTES TENSIONES

22 MÁX GRADIENTES SUPERFICIALES

23 CE A DIFERENTES CORRIENTES

24 GRADIENTES SUPERFICIALES

25 CE VARIANDO EL NÚMERO DE
SUBCONDUCTORES Con el fin de aumentar la capacidad y reducir la inductancia

26 GRADIENTES SUPERFICIALES
VARIANDO EL NÚMERO DE SUBCONDUCTORES

27 RUIDO AUDIBLE

28 RUIDO AUDIBLE Es una de las principales manifestaciones del efecto corona, está relacionado con el campo eléctrico en los conductores, condiciones metereológicas, parámetros y configuración de la línea.

29 METODOLOGÍA EPRI Obtención de la función encargada de generar la potencia acústica

30 METODOLOGÍA EPRI (2) Inclusión de los efectos tanto de propagación como de absorción del medio Contribución de cada conductor al RA final

31 DISTRIBUCIÓN DE LOS POTENCIALES ELÉCTRICOS EN EL ESPACIO PARA LA LT DE 500 kV

32 GRADIENTES SUPERFICIALES EN LOS CONDUCTORES
FASE A (Kv/cm) FASE B FASE C

33 RA EN UNA LÍNEA DE 500 kV

34 PERFIL DE RUIDO AUDIBLE SEGÚN LO ESTIPULADO POR LA IEEE Y EL EPRI

35 RUIDO AUDIBLE CONFIGURACIÓN HORIZONTAL

36 CLASIFICACIÓN DE LA AUDIBILIDAD

37 Posición del micrófono con respecto a la línea o fuente
MEDICIÓN SEGÚN (IEEE) 15 m Posición del micrófono con respecto a la línea o fuente

38 RUIDO TÍPICO SEGÚN IEEE
Línea con Corona y lluvia, medición a 15 m transversales, del vano

39 Línea doble circuito a 230 kV, 60 Hz, secuencias de fase ABC y CBA, conductor de fase ACARD1200

40 MEDICIÓN DE RUIDO (15 m) BT= buen tiempo MT= mal tiempo

41 VALOR DEL RUIDO CON EL LEQ EN EL PERFIL TRANSVERSAL
Buen Tiempo

42 PERFIL LATERAL SEGÚN IEEE

43 PERFIL LATERAL DEL RUIDO

44 PERFIL LATERAL DEL RUIDO SIMULADO (EPRI)

45 RADIO INTERFERENCIA (RI)

46 METODOLOGÍA EPRI función de excitación ()
Determinación de los voltajes y corrientes (i) inyectadas a los conductores

47 TECNICAS DE HALLAR EL CAMPO DE RI
Un solo conductor Varios conductores

48 ANALISIS MODAL Caracterización de las ondas que se propagan según el circuito Encontrar las matrices de impedancia y admitancias de la LT A partir de las matrices anteriores hallar la matriz de transformación modal y las constantes de atenuación Separar los efectos de las fases

49 ANALISIS MODAL (2) Hallar los eingevectores de B, representados por
Determinar la matriz de transformación modal

50 EJEMPLO LÍNEA DE 500 kV Modos Constante de propagación
Constante de atenuación 1 2 3

51 PERFIL DE RI EN LÍNEA DE 500 kV

52 RELACIÓN ENTRE SNR Y RI

53 CONCLUSIONES Se han implementado las metodologías propuesta, en un programa computacional elaborado en Matlab. Se ha podido analizar la afectación que producen ciertos parámetros de las líneas de transmisión tanto en los campos eléctricos, como los fenómenos generados. Se puede empezar a pensar en el diseño optimo de estructuras de líneas de transmisión, teniendo en cuenta todos los parámetros antes citados.


Descargar ppt "FENÓMENOS ASOCIADOS AL"

Presentaciones similares


Anuncios Google