Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porFrancisco Javier Cordero Aguilera Modificado hace 9 años
1
| Curso Electivo Teórico-Práctico | Análisis Cuantitativo de Colocalización en Microscopía Confocal 10-17 |08|2007 Steffen Härtel Programa de Anatomía y Biología del Desarollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile ICBM
2
I. Image Adquisition II. Deconvolution III. SegmentationIV. Analisys |-> what‘s up
3
I. Image Adquisition I.a|-> Fundamentos de la microscopía confocal I.b|-> Fundamentos de la fluorescencia II. Deconvolution III. SegmentationIV. Analisys |-> what‘s up
4
|-> Rodrigo Castillo: viernes, 10.08.07 @ 9.30-13.00 Measurement of colocalization of objects in dual-color confocal images Manders E. (1993) Journal of Microscopy 169: 375-382 |-> Ivan Alfarro: lunes, 13.08.07 @ 15-18.30 STED-Microscopy: Concepts for nanoscale resolution in fluorescence microscopy Hell S., Dyba, M., Jakobs S (2004) Current Opinion in Neurobiology 4:599-609 |-> Valentina Parra: lunes, 13.08.07 @ 15-18.30 Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells Costes et al. 2004 Biophys. J. 86, 3993–4003 |-> Ariel Contreras: martes, 14.08.07 @ 9.30-13.00 A syntaxin 1, Galphao, and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization Li, Q., Lau, A., Morris, T.J., Guo, L., Fordyce, C.B. & Stanley, E.F. (2004) J. Neurosci. 24, 4070–4081 |-> Barbra Toro: jueves, 16.08.07 @ 9.30-13.00 Co-localization analysis of complex formation among membrane proteins by computerized fluorescence microscopy: application to immunofluorescence co-patching studies Lachmanovich, E., Shvartsman, D.E., Malka, Y., Botvin, C., Henis, Y.I. & Weiss, A.M. (2003) Journal of Microscopy. 212, 122–131 |-> Nancy Leal:jueves, 16.08.07 @ 9.30-13.00 Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons Van Steensel, B., van Binnendijk, E., Hornsby, C., van der Voort, H., Krozowski, Z., de Kloet, E. & van Driel, R. (1996) J. Cell Sci. 109, 787–792 |-> Ximena Verges: viernes, 17.08.07 @ 9.30-13.00 Multicolour analysis and local image correlation in confocal microscopy Demandolx, D. & Davoust, J. (1997) Journal of Microscopy 185, 21–36 |-> Leonel Muñoz: viernes, 17.08.07 @ 9.30-13.00 A guided tour into subcellular colocalization analysis in light microscopy Bolte S. & Cordelieres P. (2006) Journal of Microscopy, 224 (3): 213–232 |-> Seminarios
5
|-> www.scian.cl
7
I. Image Adquisition I.a|-> Fundamentos de la microscopía confocal Confocal Microscopy Point Spread Function Refraction Index Mismatch Deconvolution I II. Deconvolution III. SegmentationIV. Analisys |-> Image Adquisition
8
Richard Feynman (1918-1988) “It is very easy to answer many of these fundamental biological questions. You just look at the thing ! Make microscopes a hundred times more powerful and many problems of biology would be made very much easier.“ |-> I. Image Adquisition
9
René Descartes (1596-1650) Passions of the soul ( 1649)... just look at the thing … ¿ Human visual perception ? Treatise of man ( 1637) |-> I. Image Adquisition
10
glandula pinealis / pineal organ 2| signals from other senses... A combination of... 1| direct signals... 3| feedback loops...... produce a symbolic representation of an object. |-> I. Image Adquisition
18
CSI = PC = r’
19
|-> I. Image Adquisition CSI = PC = r’
20
Hans Janssen (1595),.... Galileo Galilei (1610) 1. Microscopía |
29
Interacciones... intra- e inter moleculares... producen cambios... espectrales tiempos de vida polarización intensidad... - Fluorescencia - Fosforescencia Luminescencia: t ~ 10 -8 s t ~ 10 -3 -10 0 s Absorción / Excitación t Emissión 1. Basics of Fluorescence
30
1. Basics of Fluorescence | Photones Energía de un fotón: (~1-5eV) E = h = hc -1 | c =, frecuencia [s -1 ] h, constante de Planck [6.626 10 -34 Js -1 ], longitud de onda [m] c, velocidad de luz [~3 10 8 ms -1 ] Energía molecular: E = E rot + E vib + E el 1 : 10 3 : 50·10 3 Energía térmica: E = k T (~2.5 10 -2 eV, T ~20°C) k = Constante de Bolzmann (0.86 10 -4 eV/K) pmnmmmmµm 10 cm10 9 63 -3 _ EHzPHzTHzGHz MeVkeV eV E XUVIRMWRW VibrationRotationValenz Nucleus Internal ElecrtronesMolecules ESR / NMR 300nm 700nm
31
1. Microscopía | Diffraction limited microscopy
32
From Geometric Optics to Diffraction Theory: (‚Image Restauration in Fluorescence Microscopy‘, PhD thesis, van Kempen, 1999) Diffraction: The deviation of an electromagnetic wavefront from the path predicted by geometric optics when the wavefront interacts with a physical object such as an opening or an edge. 1. Microscopía | Diffraction limited microscopy
33
PSF = |U| 2 = f( J 0 ) U, Integral de Difracción de Kirhoff J 0, Serie de funciones de Bessel Óptica no-geométrica / Teoría de difracción 1. Microscopía | Diffraction limited microscopy
34
x/y z conventional confocal 4- 1. Microscopía | Diffraction limited microscopy
35
x/y z 2-photon spinning disc STED 1. Microscopía | Diffraction limited microscopy
36
380 nm 780 nm Fluorescein
37
1. Microscopía | Diffraction limited microscopy spinning disc confocal
38
4 π Microscopy 1. Microscopía | Diffraction limited microscopy
39
STED Microscopy Stimulated Emission Depletion 1. Microscopía | Diffraction limited microscopy
40
AFM allows the investigation of structural and functional properties of biomolecules in liquid environments, by a unique combination of : subnanometer spatial resolution millisecond temporal resolution piconewton force sensitivity 1. Microscopía | Diffraction limited microscopy
41
M Grandbois et al. (1998) Biophys J. 1. Microscopía | Diffraction limited microscopy
42
Z X Y X
44
exc Stokes: exc < em ? exc Stokes: exc < em 1. Microscopía | Diffraction limited microscopy
45
em exc Stokes : exc < em n( exc ) > n( em ) 1. Microscopía | Diffraction limited microscopy
46
Objeto (f) Resultado ~ f Mejor representación de la realidad Deconvolución PSF Objeto borroso PSF f + b Imagen con ruido (I) PSF: Point Spread Function f: Object Function b: Offset Function I: Image Matrix N: Noise Function N(PSF(x, y, z) f(x, y, z) + b(x, y, z)) = I(x, y, z) 1. Microscopía | Diffraction limited microscopy
47
Z X PSF: xy ~ 500 nm | z ~ 1500 nm 1. Microscopía | Diffraction limited microscopy
48
Snell‘s Law: sin 1 n 1 = sin 2 n 2 1.518 [Zeiss Oil] 1.33 [Water] 1.0008 [Air] Index of refraction: n = ( · ) 1/2 = c/v, electric permittivity and magnetic permeability. 2 · 2 1 · 1 1. Microscopía | Diffraction limited microscopy
49
Refractive Index: RI = n 1 /n 2 = v 2 /v 1 Snell‘s Law: sin 1 n 1 = sin 2 n 2 n = n( ) ! 1.518 [Zeiss] 1.33 [Water] 1.0008 [Air] (Egner et al., 1998) 1. Microscopía | Diffraction limited microscopy
50
n 1 n 2 n 1 = n 2 Micro-esfera: = 6 µm agua/aceite -- aceite/aceite Ley de Snell: n i · sin i = n k · sin k n = n( ) ! cover n 3 (150 µm) objective n1n1 n2n2 1. Microscopía | Diffraction limited microscopy
51
The observation volume (femtoliter) defined by the Point Spread Function must be considered as a mini-sprectrofluorimeter. 1.You need to consider the Offset I(0) in order to calibrate your signal I(0) 0 ! 2.Never saturate the signal: I I max (255 for 8 bit) ! I(0) > 0 I > I max 1. Microscopía | Diffraction limited microscopy
52
I. Image Adquisition I.b|-> Fundamentos de la fluorescencia Jablonski Diagram: Absorción, Conversión interna Fluorescencia Fosforescencia. Stokes Shift Franck-Condon Principle Deconvolution SegmentationAnalisys |-> calendario
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.