FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA

Slides:



Advertisements
Presentaciones similares
LECCIÓN 2 Estadística de Electrones y Huecos en Semiconductores
Advertisements

I.E.S.MIGUEL HERNÁNDEZ – DEPARTAMENTO FAMILIA PROFESIONAL DE ELECTRICIDAD 1.
Silicio Semiconductor.
Semiconductor tipo P y N Unión P-N en estado de equilibrio
MATERIALES SEMICONDUCTORES Llobregat Abellán, Alejandra
Materiales Tipo P y Tipo N
Electrónica Análoga I Prof. Dr. Gustavo Patiño MJ
FISICA DE LOS SEMICONDUCTORES
El enlace metálico.
Curso de Semiconductores reunión 5
Semiconductores, aisladores y metales
Dispositivos Electrónicos y Fotónicos Área de Tecnología Electrónica
Cristalino: Que está constituido por átomos apilados con un patrón regular y repetitivo. Unión metálica es aquella en que los electrones de valencia se.
SEMICONDUCTORES.
STEFANIA AGUIRRE MARISOL CUARTAS ALEXANDER ARDILA
SEMICONDUCTORES Semiconductor
De acuerdo a su conductividad eléctrica tenemos:
Modelo del mar (o gas) de electrones
Conducción Eléctrica La corriente eléctrica es debida al arrastre de electrones en presencia de un campo E. El flujo de corriente depende de: La Intensidad.
Estructura de la Materia Materiales Conductores Materiales Semiconductores y Materiales Dieléctricos Prof. Gustavo Patiño. M.Sc. Ph.D MJ
TEMA 1: SEMICONDUCTORES Mª Dolores Borrás Talavera.
CONDUCTORES Ing. Juan Jose Nina Ch. Como ya dijimos en la sección anterior, los átomos se combinan para formar compuestos; así cuando varios átomos se.
Semiconductores, aisladores y metales
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES ALEACIONES EN SEMICONDUCTORES UN Cristiam Camilo Bonilla Angarita -fsc04Cristiam- 14/junio/2015.
FÍSICA DE SEMICONDUCTORES ALEACIONES EN SEMICONDUCTORES UN ANDRÉS FELIPE PINILLA TORRES FSC27ANDRES 10 DE JUNIO 2015.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
Curso de Semiconductores Sesión 3
Universidad Nacional de Colombia Departamento de Física Asignatura Física de Semiconductores Tarea No 14 BANDAS DE ENERGÍA Profesor: Jaime Villalobos Velasco.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES CARACATERÍSTICAS DEL Si
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA UN Juan Nicolas Casas Marquez fsc08Juan 10/junio/2015.
Universidad Nacional de Colombia
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES CARACATERÍSTICAS DEL Si
Universidad Nacional de Colombia Departamento de Física Asignatura Física de Semiconductores Tarea No 14 BANDAS DE ENERGÍA Profesor: Jaime Villalobos Velasco.
FÍSICA DE SEMICONDUCTORES MOBILIDAD Y CONDUCTIVIDAD EN SEMICONDUCTORES UN ANDRES FELIPE PINILLA TORRES FSC27ANDRES 12 DE JUNIO DE 2015.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES PORTADORES EN LOS SEMICONDUCTORES UN Andrés Rey Caballero.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
Universidad Nacional de Colombia Departamento de Física Asignatura Física de Semiconductores Tarea No 14 Profesor: Jaime Villalobos Velasco Estudiante:
FÍSICA DE SEMICONDUCTORES PORTADORES EN LOS SEMICONDUCTORES UN Tatiana Andrea Gracia Prada -fsc11Tatiana
FÍSICA DE SEMICONDUCTORES CARACATERÍSTICAS DEL Si
FÍSICA DE SEMICONDUCTORES PORTADORES EN LOS SEMICONDUCTORES UN Nombre fsc10Uber Fecha
FÍSICA DE SEMICONDUCTORES PORTADORES EN LOS SEMICONDUCTORES UN Andrés Felipe Mondragón fsc20Andres Junio de 2015.
ESTRUCTURA DEL ATOMO CHOEZ PINCAY JOSE ELIAS ELECTRONICA I.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
UN Oscar Alejandro Olaya Sánchez -fsc24Oscar- 19/06/2015.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES MOBILIDAD Y CONDUCTIVIDAD EN SEMICONDUCTORES Julián David Valbuena Godoy 17 de Junio 2015.
FÍSICA DE SEMICONDUCTORES ALEACIONES EN SEMICONDUCTORES UN Miguel Ángel Parra López fsc26Miguel Fecha.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA UN Cristiam Camilo Bonilla Angarita -fsc04Cristiam- 7/junio/2015.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES ALEACIONES EN SEMICONDUCTORES
FÍSICA DE SEMICONDUCTORES ALEACIONES EN SEMICONDUCTORES UN Paola Marcela Medina Botache -fsc17Paola- Junio 20.
1.
FÍSICA DE SEMICONDUCTORES ALEACIONES EN SEMICONDUCTORES UN Juan Camilo Ramirez Ayala Código: de junio del 2015.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA
FÍSICA DE SEMICONDUCTORES ALEACIONES EN SEMICONDUCTORES UN Natalia Andrea Rodriguez Delgado fsc35Natalia Junio 19.
UN David Antonio Burbano Lavao -fsc05David-.  Una ALEACIÓN de materiales semiconductores es una agregación de diferentes estructuras cristalinas para.
FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA UN Lizeth Andrea Anzola Fernandez -fsc01Lizeth- Fecha.
Semiconductores Extrínsecos Tipo N y Tipo P
Docente: Ing. Raimon Salazar Semiconductores Intrínsecos A los semiconductores que, para poder conducir la electricidad, dependen de que los electrones.
Conceptos básicos Efecto fotovoltaico: conversión de luz en electricidad. Efecto fotovoltaico: conversión de luz en electricidad. Materia: constituida.
Tema 2: Fundamentos de Semiconductores
SEMICONDUCTORES Alumno : Rodríguez Sánchez Eduardo Francisco Carrera : Ingeniería de Sistemas Ciclo : IV Profesor : Mendoza Nolorbe Juan.
Transcripción de la presentación:

FÍSICA DE SEMICONDUCTORES BANDAS DE ENERGÍA UN ANDRES FELIPE PINILLA TORRES FSC27ANDRES 2 DE JUNIO 2015

Bandas de energía a partir de niveles discretos Conforme los átomos en un sistema se van acercando más y más, sus estructuras electrónicas tienden a volverse idénticas. Así mismo mientras la distancia entre átomos se vuelve más pequeña, las funciones de onda de los electrones se comienzan a sobreponer. El principio de exclusión de Pauli dicta que dos electrones no pueden ocupar el mismo estado cuántico, así que no puede haber más de un electrón en el mismo nivel. Esto lleva a que la organización sea cercana pero no yuxtapuesta. Esta separación discreta de energías, tiende a ser reemplazada por niveles continuos de energía en el caso de los solidos, debido a la cantidad de átomos que se juntan.

Niveles de energía del Silicio

MATERIALES Aislantes Cada solido tiene su propia estructura de bandas de energía. Esta variación permite que haya un gran espectro de características eléctricas entre los materiales. A continuación se presentan las tres clases de materiales. Los aislantes, presentan una banda de valencia llena de electrones, separada de una banda de conducción que permanece vacía por una banda que contiene un estado de energía prohibido. En este material, los electrones permaneces ligados a los átomos aunque se le aplique un cambio alto de temperatura.

MATERIALES Semiconductores Los semiconductores se caracterizan por tener una gran resistividad cuando se está a una temperatura de 0K. Esto es común a los materiales conocidos como aislantes. La diferencia yace en la distancia que existe en la banda prohibida, que es mucho más pequeña en el caso de los semiconductores. Por ejemplo, el Silicio tiene una banda prohibida, de alrededor de 1.1eV comparado con una de 5eV que presenta el diamante.

MATERIALES Metales En el caso de los metales, las bandas se sobreponen o están parcialmente llenas. Esto permite que los electrones se puedan mover libremente bajo la influencia de un campo eléctrico. Como consecuencia, los metales presentan una gran conductividad. Finalmente, se presenta una gráfica que describe las estructuras de banda de los tres materiales a una temperatura de 0K.

Material intrínseco, extrínseco y anfótero. Un semiconductor cristalino con ninguna impureza o defectos de patrón se conoce como semiconductor Intrínseco. En estos materiales no hay portadores de carga a una temperatura 0K, ya que la banda de valencia está llena de electrones y la banda de conducción vacía. Conforme se aumenta la temperatura se generan pares electrón- hueco que permiten que exista una conducción de corriente sobre el material.

Material intrínseco, extrínseco y anfótero. Además de los materiales intrínsecos, existen semiconductores a los que se les introducen impurezas dentro del cristal, estos son conocidos como extrínsecos. El proceso conocido como dopaje, se usa para variar la conductividad de los semiconductores. Se pueden dopar tanto con electrones (tipo n) como huecos (tipo p). Este proceso permite que los semiconductores que antes eran intrínsecos, se les pueda aplicar una temperatura relativamente baja para que aparezcan los primeros electrones en la banda de conducción.

Material intrínseco, extrínseco y anfótero. Un caso particular se produce cuando un material de grupo III o V de la tabla periódica es dopado con silicio o germanio del grupo IV. Estas impurezas son llamadas Anfóteras, ya que el Silicio y el Germanio sirven como donadores o aceptores.

Tipos de Semiconductores Directos e indirectos En un semiconductor directo como el caso del GaAs, un electrón en la banda de conducción puede llegar a un estado vacío de la banda de valencia emitiendo una diferencia de energía como un fotón de luz. En un semiconductor indirecto como es el Silicio, el electrón en mínimo valor de la banda de conducción, no puede pasar directamente a la banda de valencia sin haber recibido un impulso. Parte de la energía en este material se da por medio de calor.