Nutrición,Condiciones de Cultivo y Fases de Crecimiento Temperatura: Psicrófilas: crecen óptimamente en temperaturas bajas < 20 grados C. Mesófilas: crecen óptimamente a temperatura ambiente > 20- 40 grados C Flora normal del cuerpo= comensales Termófilas: Crecen a temperaturas altas
pH Mayoría Bacterias patógenas: crecen en ambientes de Ph 6.5- 7.5. Algunas toleran ambientes ácidos: flora gastrointestinal Otras como Vibrio cholerae crece en pH alcalinos.
Requisitos de oxígeno Aeróbicos Anaeróbicos facultativos Microaerofílicos capneicosrequieren más CO2 que O2 Anaeróbicos estrictos: oxígeno es letal
Gas Pak System GasPak Plus® Hydrogen + CO2 with Safety- Shielded Integral Palladium Catalyst Strip For CO2-enriched anaerobic environment.
Enlace http://www.microbiologytext.com/index.php ?module=Book&func=displayarticle&art_id=7 5
http://www. monografias http://www.monografias.com/trabajos27/crecimiento-bacteriano/crecimiento-bacteriano.shtml#ciclo
http://www.javierhuertas.com/PTMA-04-05.html
Phases of Growth 4 Phases 1. Lag Phase 2. Log Phase 3. Stationary Phase 4. Death Phase
1. Lag Phase Bacteria are first introduced into an environment or media Bacteria are “checking out” their surroundings cells are very active metabolically # of cells changes very little 1 hour to several days
2. Log Phase Rapid cell growth (exponential growth) population doubles every generation microbes are sensitive to adverse conditions antibiotics anti-microbial agents
3. Stationary Phase Death rate = rate of reproduction cells begin to encounter environmental stress lack of nutrients lack of water not enough space metabolic wastes oxygen pH Endospores would form now
3. Stationary Phase Death rate = rate of reproduction cells begin to encounter environmental stress lack of nutrients lack of water not enough space metabolic wastes oxygen pH Endospores would form now
4. Death Phase Death rate > rate of reproduction Due to limiting factors in the environment
Curva de Crecimiento
Tiempo de Generación G= (t min) (log 2)/ log Bt – log B0 Ejemplo: Bt= 4.5 X 10 8 B0= 2.83X 10 7 G= 135 min X o.301/ 8.65- 7.45 G= 33. 8 min
Calcular factor de dilución Factor de dilución= ct + cb/ ct X cs Ejemplo: Si transfieres o.1 ml en 99.9 ml de agua y siembras 0.1ml, el factor de dilución es: 0.1ml + 99.9 ml/ 0.1 ml X 0.1 ml 100/.01 = FD= 10,000
Metabolismo Autótrofos: producen su propio alimento Fotosintéticos CO2+ 2H2A CH2O + 2A Ejs: CO2 + 2 H2S CH2O + H2O + 2S CO2 + 2S + 5 H2O 3 CH2O + 2 H2SO4 CO2 + 2H2 CH2O + H2O
Autótrofos NO fotosintéticos Thiobacillus: ( Oxida azufre) 2S + 3O2 + 2 H2O 2 H2SO4 Nitrosomonas: ( Oxida amonio) 2NH4Cl + 3O2 2 HNO2 + 2 HCl + 2 H2O Nitrobacter ( oxida nitritos) 2 NaNO2 + O2 2 NaNO3
Metabolismo Heterótrofo Atacan materia preformada. Catabolizan moléculas Veamos el metabolismo de glucosa GLUCOLISIS= EMBDEN MEYERHOFF PATHWAY
Figure 9.9 A closer look at glycolysis: energy investment phase (Layer 2)
Figure 9.9 A closer look at glycolysis: energy payoff phase (Layer 3)
Figure 9.9 A closer look at glycolysis: energy payoff phase (Layer 4)
Figure 9.8 The energy input and output of glycolysis