Redes Neuronales Artificiales Autoorganizadas

Slides:



Advertisements
Presentaciones similares
Introducción a las Redes neuronales
Advertisements

DATA MINING MINERIA DE DATOS Gersom Costas.
Mapas Autoorganizados
6. Sistemas Autoorganizados
Códigos Detectores y Correctores de Errores
TRANSFORMACIONES GEOMÉTRICAS
KRIGING.
MODELO DE REGRESIÓN MÚLTIPLE
Reducción de datos Por Elizabeth León.
Taller 2. Medición de distancia entre variables y sujetos
RECONOCIMIENTO DE OBJETOS
Clustering (Agrupamiento)
ANÁLISIS DISCRIMINANTE
APRENDIZAJE WIDROW- HOFF
Inteligencia Artificial (BAIA)  Se propone lograr que las computadoras se comporten de manera que podamos reconocerlas como inteligentes.  Tiene por.
ANÁLISIS DE CORRESPONDENCIAS SIMPLE
FUNDAMENTOS DE DATA MINING Y SUS APLICACIONES N. QUEIPO, S. PINTOS COPYRIGHT 2000 CLASIFICACIÓN NO SUPERVISADA.
ANOVA Modelo I: Comparación entre medias
Análisis Estadístico de Datos Climáticos Facultad de Ciencias – Facultad de Ingeniería 2009 M. Barreiro – M. Bidegain – A. Díaz Análisis de correlación.
Codificación Distribuida
RECONOCIMIETO DE PATRONES
Representación del Conocimiento
TRANSFORMACIONES LINEALES PARA REDES NEURALES ARTIFICIALES
Diplomado "Gestión de Negocios con Data Warehouse y Data Mining".
Introducción Calculabilidad clásica Computación celular
Redes Neuronales Monocapa
Especificación de Consultas M
Ejemplo de aplicación de las ANN
Tipos de redes neuronales Perceptrón multicapa Redes de respuesta radial Competitivas Clasificación Mapa topológico.
Tema 8: Análisis Multivariante. Conjunto de técnicas aplicables cuando se registran los valores de muchas variables (esencialmente numéricas, pero también.
Problemas de Mecánica de Medios Continuos
3. Funciones discriminantes para la f.d.p normal.
Reconocimiento de Patrones
Aplicaciones de las Redes Neuronales Artificilaes Dr. Héctor Allende
(Organización y Manejo de Archivos)
Combinación de Clasificadores
Redes Asociativas.
Perceptrón Multicapa Aplicaciones. Perceptrón Multicapa MLP Latitud Longitud... Altitud Radiación solar Aproximación de funciones MLP Estado de un reactor.
EL MALLADO HEXAGONAL Dolores Bonilla Silva Daniel González Ortegón Remedios Gutiérrez Martínez.
Modelos Computacionales
Redes Competitivas.
Datos: Estadística.
DISTRIBUCION NORMAL Mario Briones L. MV, MSc 2005.
REDES NEURONALES.
Practica 4 supercomputadoras.
COMPRESIÓN AUTORREGRESIVA Y CASI SIN PERDIDA Autores: Antonio Fernández Carpio Francisco José Lamela Rincón.
3. Análisis de Correspondencias Simples
Capítulo 7 Estimación de Parámetros Estadística Computacional
Redes Neuronales Artificiales
Capacidad de Proceso.
Herramientas básicas.
Problema de inclusión en una Curva Digital Por Orellana Muñoz, Alfonso Paz Vicente, Rafael Pérez Medina, Gerardo Rodríguez Naranjo.
Análisis y Diseño de Algoritmos
Redes Neuronales Artificiales 2 - Aprendizaje
Tema 3: Filtros.
MoMento S Grupo 33: Ignacio Ayllón Benito Félix A. Velázquez Salas.
REDES NEURONALES ARTIFICIALES TEORÍA Y APLICACIONES
Aprendizaje No Supervisado y Redes de Kohonen
Redes Neuronales BPN - Backpropagation Networks
Algoritmo de Retropropagación. Conclusiones de Retropropagación n 1. Si la neurona j es un nodo de salida es igual al producto de la derivada y la señal.
Introducción a los Sistemas Inteligentes
REDES NEURONALES TEORÍA MODERNA DE LA FIRMA 2010.
Taller: Inteligencia Computacional
Ángel Berihuete Francisco Álvarez
DETECCION DE SEÑALES BINARIAS EN RUIDO GAUSSIANO El criterio de toma de decisión fue descrito por la ecuación Un criterio muy usado para escoger el nivel.
DETECCION DE PSK DIFERENCIAL El nombre de PSK diferencial (DPSK) algunas veces necesita clarificación, debido a dos aspectos separados del formato de.
OPTIMIZACION DEL DESEMPEÑO DE ERROR
Bachillerato Ingeniería en Informática Fundamentos de Computación.
TÉCNICAS DE PRUEBA DEL SOFTWARE
REDES NEURONALES ARTIFICIALES (SOM - Kohonen)
Transcripción de la presentación:

Redes Neuronales Artificiales Autoorganizadas

Autoorganización Autoorganización es el proceso en el cual, por medio de interacciones locales, se obtiene ordenamiento global. El aprendizaje no supervisado puede ser aplicado solo si hay redundancia presente en el input. Redundancia: diferencia entre la máxima cantidad de información que puede ser enviada por el canal de en-trada y el contenido de información actual del canal.

Capacidades Las redes neuronales artificiales con aprendizaje no supervisado pueden realizar lo siguiente: Análisis de similaridad. Una neurona puede decirnos exactamente cuan similar es un nuevo patrón de entrada con respecto a un patrón típico que ha sido visto antes. Análisis de componente principal. Extendiendo lo anterior a varias neuronas, se puede desarrollar un conjunto de ejes coordenados, por medio del cual se aplica este análisis. Cuando se proyectan los patrones de entrada sobre estos ejes, la discrepancia entre el conjunto inicial y el proyectado será tan pequeña como sea posible.

Capacidades (continuación) Agrupación (clustering). Un conjunto de neuronas con sali-das binarias, de las cuales solo una está activa en cada ins-tante, nos puede decir a qué categoria pertenece la entrada actual. Prototipado. La salida de la red es un ejemplo prototípico de la correspondiente categoría. Codificación. La salida de la red puede representar versio-nes codificadas del patrón de entrada usando un menor nú-mero de símbolos (p.ej. bits) tratando de retener el mayor detalle posible de la entrada. Mapas topográficos. Si las neuronas tienen un ordenamien-to geométrico fijo (p.ej. rejilla bidimensional) y si hay solo una neurona activa en cada instante, diferentes patrones de entrada pueden activar diferentes neuronas y patrones de en-trada similares pueden activar neuronas vecinas.

Aprendizaje Hebbiano no supervisado Por simplicidad consideremos una neurona. Asumamos que se tiene un conjunto de vectores de entrada {I} obtenido de una distribución de entrada P(I). En cada instante un vector I se obtiene de la distribución P(I) y se presenta a la red. Después de un tiempo la red nos podrá decir en qué grado cierto patrón de entrada forma parte de la distribución de entrada. wi .IiwT . I  es la medida escalar de similaridad: mayores valores de  indican mayor probabilidad de que la entrada actual I perte-nezca a P(I).

Regla de aprendizaje de Oja Introduce un término de decaimiento de peso:  Wj . Esto da como resultado que cada Wj converja a un valor final.  Wj =  (Ii -  Wj) El vector de pesos W =[Wj] converge a un vector de longitud unidad cuya dirección corresponde al maximo vector principal (eigenvector) de la matriz de correla-ción.

Análisis de componente principal (ACP) El objetivo es encontrar M vectores ortogonales de longi-tud unidad que modelicen la mayor parte posible de la variabilidad de los datos. Típicamente M  N de modo tal que este análisis implementa reducción de dimensio- nalidad que preserva la mayor información de en-trada posible. Usando la regla de Oja, podemos en-contrar el primer compo-nente principal sin necesi-dad de usar la matriz de correlación.

Análisis de componente principal (contin.) Para encontrar el segundo, tercer,...componente principal: Regla de aprendizaje de Sanger: i  Wij =  i (Ij - k Wkj) k=1 Regla de aprendizaje de Oja: M Ambas reglas de aprendizaje convergen a vectores unitarios ortogonales. En la regla de Sanger los vectores peso corres-ponden a los M más importantes componentes principales.

Análisis de componente principal (cont.) Importancia práctica de las reglas Hebbianas Permiten calcular ACP sin resolver la matriz de correla-ción. Permiten que la red adapte sus vectores peso a una distribución de entrada que pueda ser cambiante. Esto es importante y necesario cuando la entrada proviene de sensores, cuyas características varían con el tiempo. Importancia de ACP en las redes neuronales: Compresión de datos. Reducción de la dimensionalidad.

Análisis de componente principal (cont.) Compresión de datos La varianza de la salida de cada neurona es una medida de la contribución de la neurona a la calidad de los datos compri-midos en comparación con los originales. Reducción de dimensionalidad Permite descubrir agrupamientos de datos más fácilmente. Si la dimensionalidad es muy alta se hace más dificultoso entrenar una red: cuanto más grande la dimensionalidad del espacio de entrada mayor es el número de ejemplos de entrenamiento necesarios (p.ej.al entrenar multicapas de perceptrones).

Aprendizaje competitivo no supervisado Regla de aprendizaje para redes neuronales que tiene por objetivo formar categorías (temporalmente). Solo una neurona de salida está activa en cualquier momento: las neuronas de salida tienen interacciones inhibitorias. Conex.excitatoria Conex.inhibitoria

Forma simple de aprendizaje competitivo y agrupamiento En general la función i/o es del tipo hard limiter, debido a esto la neurona ganadora será “1” y las salidas de las otras neuronas serán todas “0” Conex.excitatoria Conex.inhibitoria

Forma simple de aprendizaje competitivo (cont.) La neurona ganadora i* es la neurona de salida con el mayor input neto hi = j Wij Ij para el vector actual de entrada I En consecuencia: Wi* . I  Wi .I, i Si los vectores peso son normalizados, la definición de gana-dora es equivalente a: Wi* - I    Wi - I , i y la regla de aprendizaje es:  Wij =  i (Ij - Wij)

Forma simple de aprendizaje competitivo (cont.) Ejemplo de clustering en 3D con vectores normalizados, por lo que estan sobre la esfera unidad. Los tres vectores peso son rotados hacia los centros de gravedad de los tres clusters de entrada.

Aplicaciones Cuantización de vectores. Usada para obtener una compre-sión de datos. En general es usada para el almacenamiento y la transmisión de información tal como imágenes y habla. Se particiona un conjunto de vectores de entrada {I} o una dis-tribución P(I) de vectores de entrada en M categorías para representar cada vector de en-trada con un índice (número). Luego con el índice de cate-goría podemos reconstruír el vector de entrada original. Los vectores peso representan los vectores prototipo.

Formación de mapa topográfico (Kohonen) Si podemos ordenar los vectores peso en el espacio de entrada de manera tal que neuronas activas vecinas (en el espacio de salida), se correspondan con vectores de entrada vecinos ( en el espacio de entrada), decimos que la red forma un mapa topográfico del espacio de entrada. Algoritmo de Kohonen Regla de aprendizaje:  Wij = (i,i*) (Ij - Wij) Donde (i,i*) es la función vecindario

Formación de mapa topográfico (cont.) Sombrero mexicano. Interacción lateral alrededor de la neurona ganadora como función de la distancia: excitación de las neuronas más cercanas, inhibición de las lejanas.

Formación de mapa topográfico (cont.) Convergencia de un mapa conservador de la topología: Evolución de una grilla bidimensional de 8x8 neuronas entrenada con una distribución de entrada uniforme y cuadrada.

Aplicaciones Regresión. Puede realizarse si el número de entradas al problema de regresión es igual a la dimensionalidad de la grilla. El algoritmo de Kohonen permite colocar la grilla de neuronas en el espacio de entrada de manera tal que el error (cuadrático) entre los vectores peso y los puntos de la distribución de entrada es mínimo. Agrupamiento (clustering). Ej. a partir de 16 animales diferentes con una red de 10x10 neuronas. La idea central es que durante el entrenamiento la parte de los atributos domine sobre la del nombre del animal. Análisis de agrupamiento con información incompleta. Ej. de la riqueza y nivel de vida en distintos países.

Aplicaciones

Algunos consejos Inicialización. Forma de la grilla de neuronas. Apredizaje con un número pequeño de ejemplos. Incremento de importancia de casos raros. Escalado de componentes del vector. Forzado de la representación en ciertas posiciones en el mapa. Seguimiento de la calidad del aprendizaje.