BOLILLA 2 ENZIMAS DE OXIDO REDUCCION: La oxidación en los sistemas biológicos. Oxidorreductasas: NAD y FAD Deshidrogenasas. Proteínas ferrosulfuradas.

Slides:



Advertisements
Presentaciones similares
Respiración aerobia de la glucosa Catabolismo de lípidos
Advertisements

Estructura y funciones de la célula
SECCIÓN II Bioenergética y el metabolismo de carbohidratos y lípidos
BOLILLA 2- 1° parte BIOENERGETICA
Metabolismo intermediario
Oxidaciones Biológicas
Facultad de Ciencias Veterinarias
RESPIRACIÓN Y FOTOSÍNTESIS
CADENA RESPIRATORIA Y TRANSPORTE ELECTRÓNICO
RESPIRACIÓN CELULAR Es el proceso por el cual la energía química de las moléculas de "alimento" es liberada y parcialmente capturada en forma de ATP Los.
RESPIRACIÓN CELULAR Es el proceso por el cual la energía química de las moléculas de "alimento" es liberada y parcialmente capturada en forma de ATP Los.
Metabolismo celular.
Si una enzima actúa sobre dos sustratos: S1 y S2 (Km= 0,1M y Km 10-2 M respectivamente, cuando ambos sustratos se encuentran en la misma concentración.
BOLILLA 3 Cadena respiratoria. Ubicación celular. Componentes de la cadena respiratoria. Función. Fosforilación oxidativa: Síntesis de ATP. Acción de Inhibidores:
BOLILLA 2 ENZIMAS DE OXIDO REDUCCION: La oxidación en los sistemas biológicos. Oxidorreductasas: NAD y FAD Deshidrogenasas. Proteínas ferrosulfuradas.
TRANSPORTE ELECTRONICO Y FOSFORILACION OXIDATIVA
Transporte de electrones y fosforilación oxidativa
Producción de ATP Podemos formar ATP a travez de: 3, 4, 5 forma
TRANSPORTE ELECTRONICO FOSFORILACION OXIDATIVA
Fosforilación a nivel de sustrato Fosforilación oxidativa
Mitocondria y respiración aeróbica
1. Conjunto de transformaciones químicas que ocurren en las células o el organismo que les permite mantener la vida. Anabolismo. Catabolismo. monosacáridos.
Fuente de energía para las células
Metabolismo celular Respiración celular: Glucólisis, ciclo de Krebs y cadena respiratoria. Fermentación.
Respiración celular Conversión energética Mitocondrias Cloroplastos
LA RESPIRACIÓN CELULAR
OBTENCIÓN DE ENERGIA Y METABOLISMO EN LOS SERES VIVOS
CATABOLISMO POR RESPIRACIÓN
República Bolivariana de Venezuela
OXIDACIÓN DE ÁCIDOS GRASOS
EL METABOLISMO CELULAR
Blog para el intercambio de información
BOLILLA 2 ENZIMAS DE OXIDO REDUCCION: La oxidación en los sistemas biológicos. Oxidorreductasas: NAD y FAD Deshidrogenasas. Proteínas ferrosulfuradas.
QUÍMICA BIOLÓGICA Lic. Cs. BIOLÓGICAS Prof. en BIOLOGÍA
Vamos a estudiar una reacción en la que juntaremos dos pares Redox en un recipiente : A oxi + e-A red B oxi + e-B red E 0´ = mV E 0´ = mV En.
QUÍMICA BIOLÓGICA Lic. Cs. BIOLÓGICAS Prof. en BIOLOGÍA
Fuente de energía para las células
Transporte electrónico mitocondrial
FOSFORILACIÓN OXIDATIVA Y CADENA TRANSPORTADORA DE ELECTRONES
UNIVERSIDAD AUTÓNOMA DE ZACATECAS “FRANCISCO GARCÍA SALINAS” UNIDAD ACADÉMICA DE MEDICINA MORFOLOGÍA: RESPIRACIÓN CELULAR ALUMNA: Haydee Teresita Favela.
Las Mitocondrias y la energía celular
EL METABOLISMO Todas las formas de vida están basadas en prácticamente las mismas reacciones bioquímicas. Cada uno de los compuestos que se generan en.
QUÍMICA BIOLÓGICA Lic. Cs. BIOLÓGICAS Prof. en BIOLOGÍA
BOLILLA 2- 1° parte Transporte electrónico y fosforilación oxidativa. Mitocondrias. Cadena respiratoria. Localización. Balance energético. Desacoplantes:
Respiración Celular.
LIC. NUTRICIÓN ANALISTA BIOLÓGICO QUÍMICA BIOLÓGICA 2014.
Cadena Transportadora de Electrones
Ciclo del Ácido Cítrico
TEMA 11 CATABOLISMO AERÓBICO Y ANAERÓBICO
RESPIRACIÓN CELULAR (RC)
Sistema de Lanzaderas Cadena Respiratoria Fosforilación Oxidativa
Química III y Química Biológica FOSFORILACIÓN OXIDATIVA
Respiración celular Objetivo:
Rutas que cosechan energía
ENERGIA ATP.
QUÍMICA BIOLÓGICA- LIC. EN NUTRICIÓN
Como obtienen energía los organismos
TEMA 13 CATABOLISMO.
Ciclo de Krebs.
RESPIRACIÓN CELULAR.
Respiración celular Alumnos: Joaquin Morales Angel Moreno Curso: 8ªA
C ADENA RESPIRATORIA Grupo 6.. C ONCEPTO ORGANIZACIÓN F RANCHESCA G AVIRIA.
FÁBRICA DE ENERGÍA CELULAR ES EL SITIO DONDE TIENEN LUGAR
Reacciones del Ciclo Q El ciclo Q adapta el cambio de un transportador de 2 e-, como CoQ, a un transportador de 1 e-, como los Cit y explica la estequiometria.
FÁBRICA DE ENERGÍA CELULAR ES EL SITIO DONDE TIENEN LUGAR
SISTEMA TRANSPORTADOR DE ELECTRONES
BOLILLA 2 TRANSPORTE ELECTRONICO y FOSFORILACION OXIDATIVA
QUÍMICA BIOLÓGICA Lic. Cs. BIOLÓGICAS Prof. en BIOLOGÍA
Fosforilación oxidativa GÓMEZ FLORES MARICRUZ.  Es la síntesis de ATP impulsada por la transferencia de e־ desde NADH Y FADH al oxigeno e involucra la.
COMPLEJO ATP sintasa F1 : 9 subunidades: a3 b3 g d e y 3 sitios catalíticos Fo: Proteína integral , canal transmembrana para protones con 3 subunidades:
Transcripción de la presentación:

BOLILLA 2 ENZIMAS DE OXIDO REDUCCION: La oxidación en los sistemas biológicos. Oxidorreductasas: NAD y FAD Deshidrogenasas. Proteínas ferrosulfuradas. Coenzima Q, Citocromo, Citocromo Oxidasa TRANSPORTE ELECTRONICO- FOSFORILACION OXIDATIVA: Cadena Respiratoria. Complejos. Inhibidores y desacoplantes. Síntesis de ATP. Control Respiratorio Formación de productos de reducción parcial del oxígeno. Mecanismos de defensa contra las especies reactivas al oxígeno. OTROS SISTEMAS DE TRANSPORTE: Sistema Microsomal. Oxigenasas. Catalasas METABOLISMO DE XENOBIOTICOS: Fase I y II.

CADENA DE TRANSPORTE ELECTRONICO Los componentes de la cadena se encuentran en la membrana mitocondrial interna. Reciben equivalentes de reducción de NADH Y FADH2 producidos en la matriz. Los componentes actúan secuencialmente en orden creciente según sus potenciales de reducción. La energía que se libera durante la transferencia electrónica está acoplada a varios procesos endergónicos entre los que se destaca la síntesis de ATP.

Localización 30ATP 32ATP

Componentes de la cadena respiratoria Transportadores de electrones -Coenzimas hidrosolubles: NAD+ coenzimas de las deshidrogenasas NADP+ FMN se unen covalentemente a flavoproteínas FAD (grupo prostético), transportan 2 e- y 2 H+ Quinonas: Coenzima Q – Ubiquinona, transportadores en medio no acuoso (membrana), transporta 1 e- y libera 2 H+ a la matriz Citocromos b, c, c1, a y a3 : proteínas con grupo prostético hemo, transportan 1 e- Proteínas ferro-sulfuradas: proteínas con Fe asociado a átomos de S, transfieren 1 e- por oxidación o reducción del Fe

Esto constituye un gradiente de protones La Cadena de Transporte de Electrones comprende dos procesos: 1.- Los electrones son transportados a lo largo de la membrana, de un complejo de proteínas transportadoras a otro. 2. Los protones son translocados a través de la membrana, desde el interior o matriz hacia el espacio intermembrana de la mitocondria. Esto constituye un gradiente de protones El oxígeno es el aceptor terminal del electrón, combinándose con electrones e iones H+ para producir agua.

La cadena de transporte de electrones y la fosforilación oxidativa estuvieron separadas conceptualmente por mucho tiempo. Las observaciones sobre la formación del ATP hacían pensar a los investigadores en un intermediario fosforilado de la reacción. En 1961 Peter Mitchell propuso la Hipótesis Quimiosmótica: “EL INTERMEDIARIO ENERGÉTICO NECESARIO PARA LA FORMACIÓN DEL ATP (O FOSFORILACIÓN DEL ADP), ES LA DIFERENCIA EN LA CONCENTRACIÓN DE PROTONES A TRAVÉS DE LA MEMBRANA”

Lugar de translocación de protones

POSTULADOS DE LA TEORIA QUIMIOSMOTICA Pasaje de H+ durante la transferencia de electrones desde la matriz al espacio intermembrana. Generación de un gradiente electroquímico : flujo electrónico acompañado de la transferencia de protones. Los protones acumulados en el espacio intermembrana crean una fuerza: «protón-motriz», por la tendencia de volver a pasar al interior para igualar el pH a ambos lados de la membrana. Esa fuerza es utilizada para el pasaje de los H+ a través de Fo y así activan la ATP sintasa

COMPLEJO ATP sintasa F1 : 9 subunidades: a3 b3 g d e y 3 sitios catalíticos Fo: Proteína integral , canal transmembrana para protones con 3 subunidades: a, b2 y c12 Esta enzima es la que transforma la energía cinética del ATP en energía química. El Dr. Boyer (1964) recibió el Premio Nobel al describir la ATP sintasa.

La energía del gradiente de protones se utiliza también para el transporte

El control de la fosforilación oxidativa permite a la célula producir solo la cantidad de ATP que se requiere para el mantenimiento de sus actividades. El valor del cociente P/O, representa el número de moles de Pi que se consumen para que se reduzca cada átomo de O2 a H2O. El cociente máximo medido para la oxidación de NADH es 2,5 y para FADH2 es 1,5, para mayor practicidad se consideran 3 ATP y 2 ATP, respectivamente. Control respiratorio por el aceptor: Las mitocondrias solo pueden oxidar al NADH y al FADH cuando hay una concentración suficiente de ADP y Pi. Cuando todo el ADP se transformó en ATP, disminuye el consumo de oxígeno y aumenta cuando se suministra ADP.

INHIBICION DEL TRANSPORTE ELECTRÓNICO Inhibidores del transporte electrónico Inhiben solamente el transporte de e- Inhibidores de la fosforilación Inhiben la síntesis de ATP, indirectamente el transporte de e- Desacoplantes Impiden la síntesis de ATP pero no inhiben el transporte de electrones. Actúan como ionóforos eliminando el gradiente de protones. Inhibidores de la translocasa Inhiben la entrada de ADP y la salida de ATP desde la mitocondria

ACCIÓN DE INHIBIDORES

Inhibidores de la fosforilación Oligomicina: Bloquea el flujo de protones a través de F0, impidiendo la fosforilación. Se inhibe la síntesis de ATP Se acumulan protones y se produce una fuerza inversa deteniéndose el transporte de electrones. Desacoplantes: Compuestos que impiden la síntesis de ATP, pero no bloquean el flujo de electrones, de esa manera desacoplan la cadena respiratoria de la fosforilación oxidativa. El 2,3-dinitrofenol (DNF) transfiere iones hidrógeno desde el lado externo hacia la matriz y anula el gradiente de protones creado por la cadena respiratoria.

Reacciones del Ciclo Q El ciclo Q adapta el cambio de un transportador de 2 e-, como CoQ, a un transportador de 1 e-, como los Cit y explica la estequiometria de 4 H+ translocados por cada par de e- que pasan al Cit c. El resultado de cada ciclo Q es la oxidación de una molécula de CoQH2, la expulsión de 4 protones y la transferencia de 2 e- al Cit c en la superficie externa de la membrana de la mitocondria. 26

FORMACION DE PRODUCTOS DE REDUCCION PARCIAL DEL OXIGENO La etapa final de la CR es la reduccion de una molécula de O2 por la cesión de 4 electrones. El problema de la convergencia simultanea de los 4 e- a este punto terminal es muy importante  Si la reduccion del oxigeno no es completa, se forman productos tóxicos. Estos productos se llaman: ESPECIES REACTIVAS DEL OXIGENO: EAO, ROS, AOS

FORMACION DE PRODUCTOS DE REDUCCION PARCIAL DEL OXIGENO

ESPECIES REACTIVAS DEL OXIGENO H2O2 OH.- Oxígeno Molecular Radical Superóxido Peróxido de Hidrógeno Radical Hidroxilo

Eliminación de EROS ENZIMAS ANTIOXIDANTES SUSTANCIAS QUIMICAS ANTIOXIDANTES GPx SOD Catalasa Ascorbato Vitamina E Beta-caroteno

Enzimas antioxidantes SUPEROXIDO DISMUTASA 2 O2.- + 2 H+ H2O2 + O2 CATALASA 2 H2O2 2H2O + O2 GLUTATION PEROXIDASA 2 GSH + H2O2 GSSG + 2H2O

OTROS SISTEMAS DE TRANSPORTE DE ELECTRONES Existen sistemas de transporte distintos de la CR. Que no participan en la síntesis de ATP Participan en reacciones de hidroxilaciones y deshidrogenaciones del sustrato. Estos sistemas se encuentran en la fracción microsomal del retículo endoplásmico. Un 90% del O2 consumido por las células se emplea en la fosforilación oxidativa.

OXIDASAS Y OXIGENASAS Localización: Microsomas y peroxisomas No asociados a la producción de ATP Usan O2 como sustrato No incorporan O2 Oxid. OXIDASAS OXIGENASAS Incorporan un átomo de O2 MONOXIGENASAS DIOXIGENASAS Incorporan los 2 átomos del O2

OXIDASAS Oxidación peroxisómica de ácidos grasos Citocromo oxidasa Flavoproteína: FADH2 FAD y O2 H2O2 Hemoproteína: Fe++ Fe+++ y O2 H2O

MONOOXIGENASAS u OXIGENASAS DE FUNCION MIXTA ó HIDROXILASAS AH + BH2 + O=O A-OH + B + H2O Sustrato principal NADH, NADPH, FMNH2, FADH2, BH4 Co-Sustrato Un O2 se incorpora al sustrato y el otro O2 forma agua. CITOCROMO P-450 Hidroxilación de esteroides Hidroxilación de fármacos Hidroxilación de xenobióticos CITOCROMO b5 Desaturación de ácidos grasos

Esquema de reacción donde interviene un Citocromo P450 H2O Sustrato Sustrato hidroxilado CytP450 (red) CytP450 (oxid) La hidroxilación de sustancias extrañas, aumenta su polaridad y solubilidad en agua  facilita su eliminación  anula su toxicidad  aumenta su metabolismo  son excretadas. RH NADPH Reducido Oxidado Citocromo P-450 Reductasa (Fe-S) Citocromo P-450 reducido O2 NADP+ H2O Reducido ROH Oxidado

Los sistemas de Cit p450 participan en reacciones de oxigenación, desulfuración, desaminación  activas en hígado. Son enzimas inducibles, entre los inductores  fármacos, alimentos asados al carbón. Pueden ser inhibidas: consumo simultáneo de jugos cítricos con medicamentos. Alcohol: Por cortos períodos inhibe el metabolismo de medicamentos  mas toxicidad. Por períodos largos: aumenta la metabolización  reduce el efecto terapéutico.

METABOLISMO DE XENOBIÓTICOS EXPOSICIÓN A SUSTANCIAS QUÍMICAS EXTRAÑAS  MEDICAMENTOS ADITIVOS EN ALIMENTOS CONTAMINANTES AMBIENTALES IMPORTANCIA BIOMÉDICA COMPRENSIÓN RACIONAL DE LA FARMACOLOGÍA. TOXICOLOGÍA INVESTIGACIÓN DEL CÁNCER EL HÍGADO ES EL PRINCIPAL ÓRGANO DONDE SE LLEVA A CABO LA METABOLIZACIÓN (DESTOXIFICACIÓN) DE LOS XENOBIÓTICOS

METABOLISMO DE XENOBIOTICOS Reacciones de Hidroxilación Citocromo P-450 FASE I Reacciones de Conjugación Metilaciones FASE II AUMENTO DE SOLUBILIDAD > EXCRECION Hígado: Membrana del retículo endoplásmico (Microsomas)

La síntesis de Citocromo P-450 es INDUCIBLE FASE I Los xenobióticos muy hidrófobos persistirían en tejido adiposo si no hubiera conversión a formas más polares XENOBIOTICO (inactivo) XENOBIOTICO (activo) Profármaco (inactivo) Fármaco (activo) XENOBIOTICO (activo) XENOBIOTICO (inactivo) Xenobiótico (menos activo) La síntesis de Citocromo P-450 es INDUCIBLE Requiere de NADPH

FASE II Glucuronidación CONJUGACIÓN Sulfatación Acetilación LOS XENOBIÓTICOS SE HACEN MÁS SOLUBLES Y ASÍ SE EXCRETAN POR ORINA O BILIS Glucuronidación CONJUGACIÓN Sulfatación Acetilación METILACIÓN S-Adenosil metionina

REACCIONES DE CONJUGACION GLUCURONIDACION (más frecuente) R-OH + Ac. Glucurónico- UDP R-AG (Radical Glucurónico) + UDP R: Anilina, ácido benzoico, fenoles, meprobromato, esteroides Glucuronil transferasa SULFATACION R-OH + PAPS (sulfato activo) R-SO4 + PAP 3’-fosfato-5’fosfosulfato de adenosina Sulfato transferasa R: Alcoholes y fenoles

CONJUGACIÓN CON GLUTATIÓN Tripéptido: glutámico, cisteína y glicina R + GSH R- S- G Glutatión- S- transferasa ACETILACION R-OH + Acetil-CoA R-Acetil + CoA-SH X + S-Adenosilmetionina XCH3 + S-Adenosil homocisteína Metil transferasa