TEJIDO MUSCULAR El tejido muscular se divide en tres categorías: Esquelético, liso y cardíaco. Las tres categorías desempeñan función de conductividad.

Slides:



Advertisements
Presentaciones similares
Anatomía Funcional -Consideraciones Musculares-
Advertisements

Tipos de tejidos.
Fisiología del ejercicio
Dr. José Roberto Martínez Abarca
Dr. José Roberto Martínez Abarca
Vías Eferentes.
Aitane Ruano y Paula Zoco
Sistema Muscular Integrantes: Elizabeth Garrido Carla Reyes
Tema 1.5: Contracción Muscular.
1. Introducción. 2. Músculo esquelético Características.
Técnico en masoterapia”
TEJIDO EPITELIAL TEJIDO MUSCULAR TEJIDO NERVIOSO TEJIDO CONECTIVO.
CARACTERÍSTICAS, FUNCIONES Y TIPOS
EFECTOS DEL EJERCICIO EN LA ACTIVIDAD NEUROMUSUCLAR
Sistema muscular.
TEJIDOS ANIMALES.
LA ESTRUCTURA DEL MUSCULO
Universidad del Valle de Mexico
TEJIDO MUSCULAR LUIS FERNANDO RODRIGUEZ CAMPOS Grupo L.
Contracción muscular y ventilación pulmonar
SISTEMA ÓSEO.
Dra.Verónica Enriquez Fisiología ICB
¿Qué función cumplen los musculos en los seres humanos ?
Célula animal Prof. Héctor Cisternas R..
Tejidos Biológicos: Clasificación, estructura y función TOMADO DE alegomez.comunidadcoomeva.com/.../TejidosBiolgicosestructurayfu...  La conformación del.
FISIOLOGIA I CONTRACCION MUSCULAR TEMA NUMERO 11
Tipos de receptores Los receptores son estructuras que corresponde a terminaciones nerviosas libres o encapsuladas, que actúan como transductores, es decir,
Sistema Muscular.
Prof. Héctor Cisternas R.
Contracción Muscular.
Músculos Profa: Sandra Vesga.
TENDONES Y LIGAMENTOS.
Tejido Conectivo o Conjuntivo
SISTEMA MOTOR Tipos de músculo Liso: visceral, involuntario
La matriz extracelular
Los Músculos.
Tejido muscular Caracterizado por células de gran longitud, cuyo carácter más específico es la presencia de miofibrillas contráctiles que permiten los.
Tejido muscular 12/04/ :01.
NIVELES DE ORGANIZACIÓN DE LA MATERIA VIVA
CONTRACCIÓN MUSCULAR MARÍA ANGÉLICA RIEDEL.
TEJIDOS TEJIDOS ANIMALES.
Tejidos Biológicos: Clasificación, estructura y función
HISTOLOGIA ANIMAL BIOL 3052 L.
Fisiología Muscular Parte II.
Biomecánica del músculo
Los efectores y Contracción Muscular
Sistema Muscular.
M.C. Ricardo Castañeda Salazar
CONTRACCIÓN MUSCULAR ¿CÓMO SE REALIZA ? MARÍA ANGÉLICA RIEDEL.
CURSO FISIOLOGIA HUMANA
Tejido muscular 2 15/04/ :59.
Tejido muscular Función Producción de movimientos corporales
Tejido Muscular.
Unidad N°3 Los tejidos.
TEDU 220 Prof. Nancy Rodriguez Por: Amilkar Velázquez Figueroa Universidad Central de Bayamón Departamento de Educación.
Cátedra de Anatomía y Fisiología Humana Dra Susana Jerez
BIOMECÁNICA DEL MÚSCULO ESQUELÉTICO
Sistema muscular.
Sistema muscular.
Biomecánica de los huesos
¿Qué es necesario para llevar a cabo las siguientes actividades?
Por: Fernando San Miguel Valbuena
Estructura microscópica del músculo
Fisiología del ejercicio II
Citoesqueleto Fisiología Celular. Dr. Arreola Viera Miguel Ángel
LOS TEJIDOS Realizado por Mercedes Gosálbez.
Reflejos Medulares Sumario: Organización de la médula espinal
Mecánica de la contracción
SISTEMA ÓSEO. Este tejido se renueva y se reabsorbe continuamente, gracias a la actividad de sus células específicas. Éstas son los osteoblastos, responsables.
Transcripción de la presentación:

TEJIDO MUSCULAR El tejido muscular se divide en tres categorías: Esquelético, liso y cardíaco. Las tres categorías desempeñan función de conductividad y contractilidad. El tejido muscular esquelético o estriado se especializa en la generación de fuerza para mantener la postura y producir movimientos; el tejido muscular liso es de movimiento involuntario y es inervado por nervios simpáticos y parasimpáticos. El tejido muscular cardíaco es considerado una mezcla de los dos anteriores.

TENDONES Los tendones son bandas blancas de tejido colágeno flexible que conectan los músculos a los huesos. Los bloques constitutivos básicos del tendón son moléculas de tropocolágeno. Las moléculas de tropocolágeno generalmente están alineadas en series paralelas para formar una microfibrilla que seguidamente se empaquetan en haces para formar fibras.

Los fascículos se agrupan para formar el tendón propiamente dicho. TENDONES Las fibras se reúnen en fascículos unidos entre sí por un tejido conectivo más suave o suelto denominado endotenon, el cual permite un movimiento relativo de los fascículos de colágeno soportando los vasos sanguíneos, nervios y fluído linfático. Los fascículos se agrupan para formar el tendón propiamente dicho.

FORMA DEL TENDÓN ANTE LA CARGA Cuando un tendón está relajado (Sin carga tensil), toma una forma ondulada. Una vez se le aplica una fuerza tensil, el patrón ondulado del tendón se pierde y toma una forma estirada. A medida que se estira el tejido colágeno del tendón, aumenta su fuerza tensil dentro de unos límites estrechos.

COMPOSICIÓN DEL TENDÓN El principal componente del tendón es el tejido colágeno tipo I, el cual compone cerca del 86% del peso seco del tendón. Las fibras elásticas están presentes en cantidades pequeñas en la matriz de los tendones. La superficie del tendón puede estar cubierta por epitenon, usualmente apreciado como una vaina de que actúa como polea y dirige el recorrido del tendón por esquinas y superficies afiladas como es el caso de los tendones flexores de los dedos de la mano. Cuando los tendones no están rodeados de epitenon y se mueven en una dirección relativamente recta, existe un tejido conectivo suave llamado peritenon que contiene vasos sanguíneos que nutren al tendón.

INSERCIÓN DEL TENDÓN EN EL HUESO La inserción del tendón en el hueso involucra una transición gradual de tendón a fibrocartílago, luego a fibrocartílago mineralizado y finalmente hueso. Algunas de las fibras de colágeno del tendón pasan a través del fibrocartílago mineralizado y dentro del hueso subcondral. Estas fibras penetrantes reciben el nombre de fibras de Sharpey. Un anclaje adicional lo dan otras fibras del tendón que se mezclan con el periostio

LA UNIÓN MIOTENDINOSA El final opuesto del tendón es una región especializada de pliegues de membranas longitudinales que incrementan la superficie del área y reducen el estrés durante la transmisión de la fuerza contráctil denominada unión miotendinosa. La fuerza de la unión miotendinosa depende de las propiedades de las estructuras y de la orientación de las fuerzas que cruzan esta unión. Las fuerzas que cruzan la unión en tijera con la fuerza siendo paralela a la superficie de la membrana son más fuertes que las uniones con un gran componente tensil perpendicular a la membrana

APONEUROSIS Las aponeurosis son tejido fibroso con membranas parecidas a cintas, similares en composición a los tendones. Estas estructuras son frecuentemente llamadas tendones planos. Por ejemplo, la aponeurosis palmar rodea los músculos de la palma de la mano. Las fibras de las aponeurosis corren en una sola dirección y por esto difieren de este mismo tejido conectivo no organizado o irregular denominado fascia.

LOS LIGAMENTOS Los ligamentos son estructuras de tejido conectivo regular y denso que unen un hueso a otro hueso. La primera función de los ligamentos, como la de los tendones, es resistir la fuerza tensil a lo largo de una línea de fibras de colágeno. Los ligamentos reciben sus nombres y se clasifican por sus sitios de inserción (coracoacromial), forma (deltoideo), función (capsular), posición u orientación (colateral, cruzado), posición relativa a la cápsula articular (extrínsecos e intrínsecos) y su composición (elástico)

GEOMETRÍA E INSERCIÓN DE LOS LIGAMENTOS La geometría de los haces de fibras de colágeno en los ligamentos es específica a la función del ligamento. Se pueden orientar en paralelo, oblícuas o en espiral. La inserción del ligamento al hueso puede ser directa o indirecta. La unión directa es comparable a las fibras de colágeno especializadas denominadas de Sharpey que unen el tendón al hueso. En la ruta indirecta, las fibras de colágeno se mezclan con el periostio del hueso.

COMPOSICIÓN DE LOS LIGAMENTOS Los fibroblastos son las principales células en los ligamentos, mientras que el principal componente fibroso de la matriz extraceluar es el colágeno tipo I en un 36%. Otros tipos de colágeno también se encuentran en los ligamentos. Los proteoglicanos también están presentes, aunque en cantidades más pequeñas que en el cartílago articular. Debido a que dos terceras partes del ligamento están compuestas por agua, los proteoglicanos que son hidrofílicos juegan un rol importantísimo en comportamiento mecánico de los ligamentos. Los ligamentos contienen también mecanorreceptores con su función especialísima de transmitir información a los tres niveles de control motor

CURVA DE STRESS – STRAIN PARA EL TENDÓN

FASCIAS Las fascias son una categoría general que incluyen tejidos conectivos densos, fibrosos y desorganizados que no caen dentro de las categorías de tendón, aponeurosis o ligamentos. Las principales fibras en las fascias son las de colágeno, aunque algunos elementos elásticos y reticulares también existen. Las fascias contiene fibras entremezcladas no paralelas y se encuentran generalmente en capas o vainas que rodean órganos, vasos sanguíneos, huesos, cartílago y dermis de la piel. Por su organización, las fascias resisten estiramientos multidireccionales.

MÚSCULO ESQUELÉTICO Los músculos esqueléticos son admirables diseños de la naturaleza, verdaderos “motores” capaces de convertir energía química en trabajo mecánico con un razonable grado de eficiencia y mínima polución. Pueden adaptarse a diferentes demandas cambiando su tamaño, y hasta cierto punto sus características funcionales.

ESTRUCTURA DEL MÚSCULO ESQUELÉTICO Si se analiza un músculo desde el exterior, la primera estructura que se encuentra es el epimisio, consitituído por tejido conectivo. El epimisio rodea el músculo por fuera y su función es mantenerlo unido. Por dentro del epimisio, se encuentran “paquetes” de fibras musculares unidas denominados fascículos, que se hallan rodeados por una vaina de tejido conectivo denominada perimisio. En el interior del perimisio, se encuentran las fibras musculares, que también están rodeadas por una vaina de tejido conectivo denominado endomisio.

LA FIBRA MUSCULAR La fibra muscular es una célula polinucleada especializada en la generación de tensión. El espesor de las fibras musculares varía en los diferentes músculos o incluso en el mismo músculo (Astrand, P y Rodahl K. 1992). En muchos músculos, la longitud de la fibra se extiende a lo largo de todo el recorrido del músculo, es decir, se proyecta desde un tendón hasta otro. Las miofibrillas constituyen la porción contráctil de la fibra muscular y se disponen paralelamente entre si a lo largo de la fibra muscular. Estas estructuras están formadas por una serie de unidades repetidas denominadas sarcómeros.

LOS SARCÓMEROS Los sarcómeros son estructuras que constituyen la unidad básica de una miofibrilla. Se encuentran unidos continuadamente uno de otros a partir de una estrecha membrana denominada línea Z. En la región medial del sarcómero, existe una zona denominada A, en la cual puede encontrarse tanto actina como miosina. Las bandas claras se denominan bandas I, en esta región sólo pueden encontrarse filamentos de actina. En la banda A se encuentran los filamentos de miosina que al producirse la excitación neural, provocan el acortamiento del sarcómero y la contracción muscular por consiguiente.

UNIDAD MOTORA La totalidad de las fibras musculares inervadas por una misma motoneurona alfa, que se ubica en el asta anterior de la médula, se denomina “unidad motora”. Existen dos grandes tipos de neuronas que pueden formar parte de las unidades motoras: Neuronas de gran tamaño que inervan entre 300 y 500 fibras musculares diferentes. Estas neuronas presentan una frecuencia de emisión del impulso nervioso que puede variar entre 25-100 Hz, es decir, entre 25 y 100 impulsos nerviosos por segundo. Neuronas de escaso tamaño que inervan sólo entre 10 y 180 fibras musculares diversas. Su frecuencia de descarga de impulsos nerviosos varía entre 10 y 25 Hz, es decir, entre 10 y 25 impulsos nerviosos por segundo.

CARACTERÍSTICAS FUNCIONALES DE LOS DIFERENTES TIPOS DE FIBRAS MUSCULARES Pueden identificarse dos clases principales de fibras, aquellas con un tiempo hasta la tensión pico relativamente largo: fibras de contracción lenta o tipo I y las fibras con un tiempo más corto para alcanzar su máximo pico de producción de fuerza: fibras de contracción rápida o tipo II. Las fibras tipo II se subclasifican en IIa (rápidas) y II b (explosivas). Todas las fibras tipo II son inervadas por neuronas de gran tamaño, las cuales poseen una gran frecuencia de descarga (25-100 Hz), mientras que las fibras tipo I son inervadas por neuronas de menor tamaño con menor frecuencia de descarga (10-25 Hz). Las fibras Tipo II b logran su más alta manifestación de fuerza a los 50 Hz, mientras que las fibras tipo I logran su pico de tensión con frecuencias de 25 Hz. La velocidad de contracción y relajación en las fibras rápidas es mayor que en las lentas y por ello deben ser estimuladas con mayor frecuencia para alcanzar su máximo desarrollo de fuerza. Por tanto, la liberación de energía será rápida en para las fibras tipo II (hidrólisis de ATP 600 veces por segundo) y lenta para las tipo I (hidrólisis de ATP 300 veces por segundo.

CARACTERÍSTICAS FUNCIONALES DE LOS DIFERENTES TIPOS DE FIBRAS MUSCULARES Para el músculo esquelético humano, hay estudios que indican que el tiempo hasta la tensión pico en una contracción isométrica máxima es de 80 a 100 milisegundos para las fibras tipo I, mientras que para las fibras de contracción rápida tipo II, este tiempo se reduce aproximadamente 40 milisegundos, siendo menor el tiempo para las fibras tipo II b que para los fibras tipo II a. Una cuestión muy importante a considerar es que no existen diferencias entre la cantidad de fuerza muscular que una fibra rápida puede realizar en comparación con una fibra lenta, si tuvieran el mismo contenido de proteínas de miosina y actina. Por ello, la principal diferencia desde un punto de vista funcional entre distintos tipos de fibras, es la velocidad de acortamiento que se produce y no la fuerza que cada una ellas puede ejercer. La clasificación del tipo de fibras se realiza mediante la diferenciación histoquímica de la enzima ATPasa miofibrilar.

CARACTERÍSTICAS FUNCIONALES DE LOS DIFERENTES TIPOS DE FIBRAS MUSCULARES Es creído que la cantidad de ATPasa unida a miosina es en realidad limitante de la velocidad del proceso de contracción muscular. Dicho de otro modo, una fibra muscular se puede contraer más rápido que otras debido a su capacidad de romper una mayor cantidad de ATP en unidad de tiempo. Exponiendo una muestra de músculo tinción histoquímica a diferente pH, se pueden identificar los dos tipos de fibras principales. A pH de 10,3 las fibras tipo I se tiñen blancas y las tipo II oscuras, mientras que a pH de 4,3 sucede todo lo contrario. Por tanto, no es recomendable hablar de fibras blancas a las rápidas y rojas a las lentas.

CARACTERÍSTICAS METABÓLICAS DE LAS FIBRAS MUSCULARES

DIFERENCIAS EN LA PRODUCCIÓN DE FUERZA POR LA ORIENTACIÓN DE LAS SARCÓMERAS En la figura se muestra una ilustración esquemática para mostrar la fuerza generada por tres sarcómeras ordenadas (a) en serie y (b) en paralelo. En (a) las fuerzas generadas en cualquier lado de la línea Z B y C, se cancelan cada una por acción de las dos sarcómeras a cada lado. Así, la fuerza neta del sistema corresponde únicamente a la fuerza generada por A1 y A2, es decir, el equivalente de una sarcómera. En (b), las fuerzas generadas por las tres sarcómeras en paralelo corresponde a tres veces la generada en (a) Inversamente, la distancia acortada será tres veces más grande en el sistema (a).

ÁNGULO DE PENACIÓN DE LAS FIBRAS MUSCULARES Los músculos longitudinales o fusiformes tiene fibras musculares que se encuentran paralelas a la línea de tracción del tendón, por tanto, la magnitud total de la fuerza se dirige a lo largo de la línea de acción del tendón. Las fibras de los músculos penados (uni-bi-multipenados) se orientan en un ángulo oblícuo a la línea de acción del tendón, de esta manera, sólo una porción del total de la fuerza generada se transmite al tendón.

ÁNGULO DE PENACIÓN DE LAS FIBRAS MUSCULARES La penación de las fibras permite incrementar el número de fibras sin incrementar significativamente el diámetro muscular. El potencial de producción de fuerza se incrementa por el aumento del número de fibras que se encuentran adyacentes unas a otras.