FOTOSÍNTESIS.

Slides:



Advertisements
Presentaciones similares
FOTOSÍNTESIS Prof. Daniela Quezada M.
Advertisements

TEMA 17: LOS CLOROPLASTOS
EL PROCESO DE FOTOSÍNTESIS
LA FOTOSÍNTESIS.
Capturando la energía lumínica Para activar el Ciclo de Calvin
FOTOFOSFORILACIÓN Reacciones de transferencia de electrones
“Incorporación y transformación de energía en organismos autótrofos”
TIPOS DE NUTRICIÓN 1.- Según la forma de captar el carbono (materia orgánica): Autótrofos: A partir de la materia inorgánica y del CO2 de la atmósfera.
COLOR DE LOS VEGETALES.
TEMA 17: LOS CLOROPLASTOS
TEMA 17: LOS CLOROPLASTOS
TIPOS DE NUTRICIÓN 1.- Según la forma de captar el carbono (materia orgánica): Autótrofos: A partir de la materia inorgánica y del CO2 de la atmósfera.
TEMA 17: LOS CLOROPLASTOS
Sesión 8 Fotosíntesis.
FOTOSINTESIS.
Metabolismo.
Enzimas Fotosíntesis y sus efectos Digestión Respiración celular

EL PROCESO DE FOTOSÍNTESIS
El proceso de fotosíntesis
Fotosíntesis Animaciones.
Equipo Fotosintequest Sosa Lara Aldo Bobadilla García Alfredo
UNIDADES METABOLISMO.
“Minds are like parachutes. They only function when they are open.
FOTOSINTESIS La energía lumínica es capturada por los organismos fotosintéticos quienes la usan para formar carbohidratos y oxígeno libre a partir del.
Fotosíntesis.
FOTOSÍNTESIS : «estructuras involucradas»
FOTOSÍNTESIS.
EL PROCESO DE FOTOSÍNTESIS
La fotosintesis.
Fotosintesis.
Paula A. Aedo Salas Prof. Biología y Cs. Ing. Agrónomo (e)
¿En qué consiste la fotosíntesis?
Planta Partes importantes de la planta: Estomas
FOTOSÍNTESIS Un proceso vital.
Fotosíntesis. Incorporación de energía al ecosistema
Anabolismo: la fotosíntesis Presentación organizada por
Autótrofo Heterótrofo
FOTOSÍNTESIS.
Fotosíntesis GLUCOSA H2O O2 + CO2 CO2 H2O “GLUCOSA” O2 Luz (hn) +
Proceso de fotosíntesis
Célula vegetal.
¿cómo se produce el oxígeno?
EL PROCESO DE FOTOSÍNTESIS
Fotosíntesis CO2 H2O “GLUCOSA” O2 Luz (hn) +
Fotosíntesis.
EN LA FOTOSÍNTESIS: La luz solar es la fuente de energía que atrapa la clorofila, un pigmento verde en las células que los autótrofos utilizan para la.
El proceso de fotosíntesis
IES JOAQUÍN TURINA METABOLISMO.
FOTOSINTESIS TEMA 4.
Fotosíntesis.
¿DE DÓNDE SE OBTIENE EL CARBONO QUE CONSTITUYE A LAS MOLÉCULAS QUE SE PRODUCEN? El ATP y el NADPH se utilizan para fabricar los enlaces C-C en la etapa.
Conversion de la Energia Solar
Fotosíntesis Equipo No..
FOTOSÍNTESÍS. FOTOSÍNTESIS.
Bases para entender el ecosistema
FOTOSÍNTESIS Miss Marcela Saavedra Aravena.
PROCESOS IMPLICADOS EN LA OBTENCIÓN DE NUTRIENTES Y ENERGÍA
Constanza Monsalve Nicole Prambs Lisbeth Seguel
Absorción de luz El sol emite en energía en un espectro electromagnético. Este va desde los rayos gamma de longitud de onda corta.
Como obtienen energía los organismos
Autor: Gerald Alarcón Pereira
¿QUÉ ES FOTOSINTESIS? 1.
FASES DE LA FOTOSÍNTESIS
INTEGRAZIONE DI BIOLOGIA
Fotosíntesis La fotosíntesis es el proceso que mantiene la vida en nuestro planeta. Las plantas terrestres, las algas de aguas dulces, marinas o las que.
Fotosíntesis y Respiración Celular
CLAUDIA ESCOBAR GIL.  La Fotosíntesis es un proceso en virtud del cual los organismos con clorofila, capturan energía en forma de luz y la transforman.
Biología 2º Bachillerato - Salesianos Atocha Luis Heras.
TEMA 13 ANABOLISMO.
Transcripción de la presentación:

FOTOSÍNTESIS

La Fotosíntesis La Vida en nuestro planeta depende del Sol Proceso donde las plantas capturan energía solar y la convierten en energía química contenida en las moléculas de carbohidratos, lípidos y proteínas

Tipos de Organismos Organismos Autótrofos: capaces de producir su propio alimento, ej. Algunas bacterias y las Plantas Organismos Heterótrofos: Se alimentan de los autótrofos, de otros heterótrofos y de desechos orgánicos. Ej. La mayoría de bacterias, protistas, los hongos y los animales

¿Qué es la luz? La luz es una radiación que se propaga en todas direcciones y siempre en línea recta en forma de ondas electromagnéticas. La línea amarilla muestra el tiempo que tarda la luz en recorrer el espacio entre la Tierra y la Luna, alrededor de 1,29 segundos.

Naturaleza de la luz La longitud de onda, es decir, la distancia entre la cresta de una onda y la cresta de la siguiente, va desde décimas de nanómetro (1 nm = 10-9 m) en los rayos gamma, hasta kilómetros (1 km = 103 m) en las ondas de radio de baja frecuencia

Diferentes longitudes de onda A menor longitud de onda es mayor su energía

Espectro Visible

Fotosíntesis Plantas son fotoautótrofos o fotótrofos: mediante la fotosíntesis elaboran azúcares usando la luz como fuente de energía y el dióxido de carbono como fuente de carbono El carbono fijado por la fotosíntesis es espectacular, la producción anual de materia orgánica seca: 1,55 x 1011 toneladas, con aprox. 60% formada en la tierra, el resto en océanos y aguas continentales.

Productores Predominantes

Los Cloroplastos SECCIÓN TRANSVERSAL CELULA DEL MESOFILO Hoja Mesófilo Espacio intermembranoso Membrana externa interna Espacio tilacoideo Tilacoide Estroma Granos

Los Cloroplastos Los Cloroplastos contienen los pigmentos fotosintéticos

Pigmentos Fotosintéticos Eucariotas fotosintéticos (plantas y algas), la clorofila a es el principal pigmento fotosintético: Absorbe luz violeta, azul, anaranjado - rojizo, rojo. Pigmentos accesorios Incluyen clorofila b, c, d y e Los carotenoides que pueden ser de dos tipos: los carotenos (amarillos) y las xantofilas (naranjas). Ej. tomate, chile y zanahorias. Las ficobilinas: ficocianina y ficoeritrina, pigmentos presentes en algas y cianobacterias Estos absorben energía que clorofila no puede absorber

Espectro de absorción de la Clorofila y Pigmentos Accesorios

La Clorofila Luz Cloroplasto Luz reflejada absorbida transmitida La Clorofila absorbe todas las longitudes de onda de luz visible excepto el verde, el cual es reflejado, de ahí la coloración verde de las hojas y otras estructuras

Estructura de la Clorofila La molécula de clorofila está formada por una cabeza tetrapirrólica con un átomo de magnesio en su centro, y una cola de fitol (alcohol de cadena larga). 

Fases de la Fotosíntesis I Fase Luminosa Requiere energía de luz del sol Ocurre en los tilacoides, a través de los fotosistemas Genera energía (e-) que es transportada por moléculas especiales (ATP y NADPH–) para utilizarse en segunda fase Un fotón es capturado por el pigmento fotosintético de un centro de reacción, provocando la excitación de un e- el cual es elevado a un nivel de energía superior (estado excitado) y por reacciones redox la energía del e- se adiciona al ATP o al NADPH– y a la vez ocurre fotólisis del agua.

Fotosistemas En el cloroplasto, los complejos proteína-clorofila se encuentran empaquetados en la bicapa lipídica de los tilacoides. Los pigmentos captan la luz como una antena (complejo antena) y pasan la energía de una molécula de pigmento a otra, hasta que alcanza una forma especial de clorofila a que constituye el centro de reacción del fotosistema, que la utiliza para iniciar las reacciones redox.  

Fotosistemas Hay dos Fotosistemas: Fotosistema I (FSI): asociado a clorofila a, absorbe luz a longitudes de onda de 700 nm (P700) Se localiza, casi exclusivamente, en las lamelas estromales y en la periferia de los grana. Se transfieren dos e- a la molécula de NADP+ reduciéndola para formar NADPH (en el lado de membrana tilacoidal que mira hacia el estroma) El FSI se considera entonces como un fuerte reductor .. 

Fotosistemas Fotosistema II (FSII): asociado a clorofila a, con un centro de reacción absorbe luz a una longitud de onda de 680 nm (P680) Se produce fotólisis del agua (oxidación) y liberación de oxígeno 2 H2O  O2 + 4 H+ + 4 e¯ Ambos fotosistemas operan en serie, transportando electrones, a través de una cadena transportadora de electrones Se considera el FSII como un fuerte oxidante

Flujo de fotones y electrones en reacciones luminosas Aceptor primario de electrones Transporte de electrones Aceptor primario de electrones Cadena de transporte de electrones Fotones Energía para sintesis de POTOSISTEMA I POTOSISTEMA II Por quimiósmosis

CADENA DE TRANSPORTE DE ELECTRONES (REDOX) Producción de ATP por Quimiósmosis y NAPH por Fotofosforilación No cíclica Compartimiento tilacoideo (alto H+) Membrana tilaoidea Estroma (bajo en H+) Luz Moléculas de la antena CADENA DE TRANSPORTE DE ELECTRONES (REDOX) FOTOSISTEMA II FOTOSISTEMA I ATP SINTETAZA Clorofila a (P700) (P680) Reducción del Fotólisis del Agua

Producción de ATP por Quimiósmosis y NAPH por Fotofosforilación No cíclica Fotólisis del Agua Transportadores de nivel energético sucesivamente menor: plastoquinona (PQ), citocromo bf (cit bf), y plastocianina (PC).

Fotofosforilación No Cíclica Se produce ATP y NADPH Se libera oxigeno

Fotofosforilación Cíclica El electrón del P700 regresa a esta misma molécula (a través de los cit bf y la PC). En este caso también se produce un bombeo de protones al espacio intratilacoidal que permite la síntesis de ATP adicional (fotofosforilación cíclica) plastoquinona (PQ) citocromo bf (cit bf) plastocianina (PC) Pero que no se reduce el NADP+ a NADPH, ni se liberará oxígeno, porque no podrá haber oxidación del agua.

Segunda fase “Reacciones de oscuridad” Independiente de la luz solar Ocurre en el estroma Productos de la fase luminosa (ATP y NADPH) son utilizados para formar enlaces covalentes C – C (en los carbohidratos)

Ciclo de Calvin - Benson Se reduce el CO2 utilizando ATP y NADPH provenientes de Primera Fase, para formar compuestos más complejos. Se forman los enlaces C – C de los carbohidratos (ciclo de Calvin) a partir del CO2 proviene de la atmósfera o del agua (en plantas acuáticos/marinos). Incorporación del CO2 se conoce como fijación del Carbono.

Ciclo de Calvin - Benson Fijación de una molécula de carbono: Un azúcar de 5 carbonos, la ribulosa difosfato (RuDP) se une al CO2, formando una mol. de 6 carbonos, que se rompe en 2 mol. de 3 carbonos (3-Fosfoglicérico o PGA). Esta reacción está catalizada por la enzima RuDP carboxilasa oxigenasa (RuBisCO) Síntesis del Fosfogliceraldehído (PGAL): El ATP devuelve la energía y el NADPH2 cede los hidrógenos al 3-Fosfoglicérico, formando el PGAL. Por cada seis vueltas del ciclo se forma una glucosa fosforilada Formación de compuestos orgánicos: El PGAL puede dar origen a la Glucosa, Fructosa, Almidón, también puede formar grasas y aminoácidos para formar proteínas.

Enzima Catalizadora RuBisCO III Fase de Regeneración Fosforilación Enzima Catalizadora RuBisCO Reducción Oxidación PGAL PGA I Fase Fijación del C II Fase Reducción 12 ATP 12 ADP + 12 Pi RuBP FOSFORILADA (unida a un Pi o grupo fosfato) Se pierde otro Pi III Fase de Regeneración

PGAL es base para formar otras biomoléculas

Importancia de la Fotosíntesis La síntesis de materia orgánica a partir de la inorgánica, la cual irá pasando de unos seres vivos a otros mediante las cadenas tróficas, para ser transformada en materia propia por los diferentes seres vivos. Produce la transformación de la energía luminosa en energía química, necesaria y utilizada por los seres vivos En la fotosíntesis se libera oxígeno, que será utilizado en la respiración aerobia como oxidante. De la fotosíntesis depende también la energía almacenada en combustibles fósiles como carbón, petróleo y gas natural. La diversidad de la vida depende de la fotosíntesis.

Factores que Afectan la Fotosíntesis La cantidad de luz: fuente de energía La concentración atmosférica de CO2: fuente de carbono La disponibilidad de agua: Fotólisis y medio para los procesos metabólicos La temperatura, influye en todos los procesos enzimáticos y metabólicos; juegan un papel la disponibilidad de agua, puede afectar al grado de apertura estomática y por tanto a la difusión del CO2, y la disponibilidad de nutrientes.

Factores que Afectan la Fotosíntesis Las características propias del vegetal (estructurales, bioquímicas, etc.) - La densidad de los estomas y su sensibilidad - La edad de la hoja y el área foliar Disponibilidad de sustrato, obtención de nutrientes y minerales Fotorrespiración

Fotosíntesis

Vías para la Fijación de Carbono Los estomas regulan la entrada y salida de gases de la planta Son aperturas que atraviesan la epidermis de las hojas. Se abren y cierran según las condiciones ambientales, altas temperaturas se cierran, evitando la pérdida de agua, pero impide la entrada de CO2

El problema de la fotorrespiración. En presencia de suficiente CO2, la enzima RuBisCO introduce el CO2 en ciclo de Calvin. Sin embargo, si la concentración de CO2 en la hoja es muy pequeña comparada al O2, la enzima cataliza la reacción de la RuDP con el oxígeno, proceso de fotorrespiración, los glúcidos son oxidados a CO2 y agua en presencia de luz. A diferencia de la respiración mitocondrial, la fotorrespiración es un proceso donde la energía se pierde, y no se produce ni ATP ni NADH. En algunas plantas, cerca del 50 % del carbono fijado en la fotosíntesis puede ser reoxidado a CO2 durante la fotorrespiración.

Una solución: Otras vías de fijación del CO2 Algunas plantas la unión del dióxido de carbono a una molécula llamada ácido fosfoenolpirúvico (PEP), formando un ácido de cuatro carbonos llamado ácido oxalacético. Hay dos grupos de estas plantas: plantas C4 y las CAM. Las restantes especies, en las que el CO2 se fija para formar el compuesto de tres carbonos llamado ácido fosfoglicérico (PGA), se conocen como plantas C3

Comparación entre C3 y C4