OPTIMIZACION DE LAS INSTALACIONES ELÉCTRICAS

Slides:



Advertisements
Presentaciones similares
Ingº Alberto G. Martínez - Departamento de Ingeniería - Secco
Advertisements

ASIGNATURA: MATEMÁTICA
UNAM Dimensionamiento y Capacidad de conducción de Corriente de los conductores.
CONCEPTOS BÁSICOS DE ELECTRICIDAD y DIMENSIONAMIENTO DE CONDUCTORES
Capítulo 27. Corriente y resistencia
SELECCIÓN DE CABLES EN INSTALACIONES INDUSTRIAL
Los números del 0 al cero uno dos tres cuatro cinco 6 7 8
1 LA UTILIZACION DE LAS TIC EN LAS MICROEMPRESAS GALLEGAS. AÑO mayo 2005.
1 LA UTILIZACION DE LAS TIC EN LAS PYMES GALLEGAS AÑO de Junio de 2005.
TEMA 2 MÚLTIPLOS Y DIVISORES
02- Plan Organización Docente v.2 Noviembre 2009 SIES – SISTEMA INTEGRADO DE EDUCACIÓN SUPERIOR.
01- OFERTA FORMATIVA v.2 Noviembre 2009 SIES – SISTEMA INTEGRADO DE EDUCACIÓN SUPERIOR.
Aladdín-respuestas 1.Vivía 2.Era 3.Amaba 4.Quería 5.Gustaban 6.Se sentía 7.Salía 8.Tenía 9.Decidió 10.escapó 11. Se vistió 12. Conoció 13. Vio 14. Pensó
Tema 7.- CORRIENTE ELÉCTRICA
SIMATICA V2.0. Automatización de Viviendas con Simatic S7-200
CLASE Nº 19 Electrodinámica.
Tubos La siguiente normativa presenta unos cambios sustanciales con respecto a la anterior, entre otras destacaremos: El tipo de sistema de instalación.
Electrodinámica M. En C, Cindy Rivera.
Optimización del Factor de Potencia.
William Shakespeare ( greg.), fue un dramaturgo, poeta y actor inglés. Conocido en ocasiones como el Bardo de Avon (o.
Jornada de Capacitación 2012
PRUEBA DE APTITUD ACADÉMICA RAZONAMIENTO MATEMÁTICO
TELEFONÍA IP.
COMPAÑÍA GENERAL DE ELECTRICIDAD
Factor de Potencia Julio, 2002.
Factor de Potencia.
Parte 3. Descripción del código de una función 1.
Sistemas de Puesta a Tierra en Instalaciones de Cables Subterráneos de Alta Tensión – Niveles de Campo Magnético (Cod: 108 – Sesión 1) Autores del Trabajo.
Vocabulario querer comerlo -paja por supuesto - madera
INSTRUMENTOS DE IMAN PERMANENTE Y BOBINA MOVIL LOGOMETRO
FUNCIONES DE UNA VARIABLE REAL
Dr. Fernando Galassi - Lic. Gisela Forlin
POTENCIA Y ARMÓNICOS(I)
A Concepto de energía eléctrica
TEMA 3.7 POTENCIA ELECTRICA Y LEY DE JOULE.
Indicadores CNEP Escuela
RAZONAMIENTO MATEMATICO Mg. CORNELIO GONZALES TORRES
PÉRDIDAS TÉCNICAS CAUSAS DE LAS PÉRDIDAS TÉCNICAS DE ENERGÍA.
¡Primero mira fijo a la bruja!
Universidad de Santiago de Chile Centro de Capacitación Industrial C.A.I. Página Nº1 Capitulo IV Curso de Capacitación Controladores Lógicos Programables.
¿Qué es un conjunto? Un conjunto es una colección de objetos considerada como un todo. Los objetos de un conjunto son llamados elementos o miembros del.
Utilización de materiales con la Marca de Seguridad.
MINIMO COMÚN MÚLTIPLO DE DOS NÚMEROS a y b
Módulo 2: Condiciones Generales de Trabajo
las tensiones simples instantáneas de un sistema
By: Nicholas, Rayna, Nathaniel, Calvin
Los números. Del 0 al 100.
Simbología Eléctrica en media tensión
Conceptos básicos de electricidad Dimensionamiento de conductores
CORRIENTE CONTINUA Unidad 17.
Vocabulario: (Los números)
uno cero dos seis siete nueve Los Números DIEZ cinco ocho tres
Los Numeros.
SUCESIONES Y PROGRESIONES.
Diagrama CAUSA_EFECTO ó ISHIKAWA ó ESPINA DE PESCADO
Ignacio Acosta Fernanda Navarro
Instalaciones eléctricas
Herramienta FRAX Expositor: Boris Inturias.
TECNOLOGÍA ELECTRÓNICA CONDUCTORES I
Corrección del factor de potencia
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL
Producción Transformación Distribución
Dimensionamiento de cables
CÁLCULO ELÉCTRICO DE LÍNEAS
CALIDAD DE ENERGÍA ELÉCTRICA
TEMA 9. LA CORRIENTE ELÉCTRICA
Establece una relación entre la diferencia de potencial (v) y la
¿Qué es la Electricidad?
Sistemas de Energía y Equipos Eléctricos Dr.-Ing. Rodrigo Palma Behnke Depto. de Ingeniería Eléctrica EL4103, Universidad de Chile / 2012 Modelos de líneas.
CLASIFICACION DE LOS MOTORES ELECTRICOS
Transcripción de la presentación:

OPTIMIZACION DE LAS INSTALACIONES ELÉCTRICAS

CONTENIDO TÉCNICO DIMENSIONAMIENTO DE CONDUCTORES ELÉCTRICOS CALIDAD DE LA ENERGÍA ELÉCTRICA PROTECCIONES ELÉCTRICAS SISTEMAS DE PUESTAS A TIERRA.

DIMENSIONAMIENTO DE CONDUCTORES ELÉCTRICOS

DIMENSIONAMIENTO DE CONDUCTORES ELÉCTRICOS El dimensionamiento de Conductores Eléctricos debe cumplir , con los requerimientos : Capacidad de Transporte. Control de la Tensión de Pérdida. Soportar las Solicitaciones de los Corto Circuitos.

INTRODUCCIÓN · Variaciones de voltaje. · Variaciones de frecuencia. Las instalaciones eléctricas hoy en día, presentan una serie de problemas originados en la calidad de la energía eléctrica.. · Variaciones de voltaje. · Variaciones de frecuencia. . Señal de tensión, con alto contenidos de impurezas. · Etc...

INTRODUCCIÓN Maquinas Eléctricas. Líneas Eléctricas. Lo anterior , origina en los Sistemas Eléctricos : Funcionamiento irregular , donde se acrecientan las Pérdidas de Energía por Calentamiento en : Maquinas Eléctricas. Líneas Eléctricas.

La norma ANSI/IEEE C57.110-1986 , recomienda que los equipos de potencia que deben servir cargas no lineales ( Computadoras ), deben operar a no más de un 80% su potencia Nominal ; es decir , los sistemas deben ser Sobredimencionados a un 120% la potencia nominal que el sistema de cargas requiera.

Capacidad de Transporte de los Conductores La energía Eléctrica , transportada a través de los conductores eléctricos, debe estar presente en el momento y en las cantidades que el usuario requiere en las mejores condiciones de Seguridad y Operación para los fines requeridos. La seguridad y la operación están en directa relación con la calidad e Integridad de las Aislaciones de los conductores eléctricos ; y estas están en directa relación con la Carga servida por los conductores y por la Sección de los mismos.

Capacidad de Transporte de los Conductores La corriente eléctrica Al circular , a través de un conductor origina un Calentamiento que obedece a la expresión de : Joule : Esta elevación de Temperatura ,genera en los aislantes : · Disminución de la Resistencia de Aislación. · Disminución de la Resistencia Mecánica.

Capacidad de Transporte de los Conductores · Sobrecalentamiento de las líneas. · Caídas de tensión. · Corto circuitos y Riesgos de incendios. · Fallas de aislación a tierra. · Cortes de suministro. · Pérdidas de energía. Representan algunos de los Principales efectos de un mal uso ò dimensionamiento de los conductores, en una instalación eléctrica.

Intensidad de Corriente Admisible para Conductores de Cobre (Secc Intensidad de Corriente Admisible para Conductores de Cobre (Secc. milimetricas.) SECCIÓN NOMINAL TEMPERATURA DE SERVICIO = 70°C 2 (mm) GRUPO I GRUPO II GRUPO III 1.5 15 19 23 2..5 20 25 32 4 25 34 42 6 33 44 54 10 45 61 73 16 61 82 98 GRUPO 1 :Monoconductores Tendidos al Interior de Ductos . GRUPO 2 :Multiconductores con Cubierta Común, que van al interior de Tubos Metálicos Cables Planos , Cables Portátiles o Móviles ,etc..... GRUPO 3 :Monoconductores Tendidos Sobre Aisladores TEMPERATURA AMBIENTE = 30° C

Intensidad de Corriente Admisible para Conductores de Cobre (Secciones AWG) TEMPERATURA AMBIENTE = 30° C SECCIÓN NOMINAL TEMPERATURA DE SERVICIO 2 GRUPO A GRUPO B (mm) AWG 60°C 75°C 60°C 75°C .82 18 7.5 7.5 - - 1.31 16 10 10 - - 2.08 14 15 15 20 20 3.31 12 20 20 25 25 5.26 10 30 30 40 40 8.36 8 40 45 55 65 13.30 6 55 65 80 95 21.15 4 70 85 105 125 Grupo A : Hasta 3 Conductores en tubo o en Cable o Directamente Enterrados. Grupo B : Conductor Simple al Aire Libre

Factores de corrección a la capacidad de transporte. La capacidad de transporte de los conductores Se define por la capacidad de los mismos para disipar la temperatura al medio que los rodea ; a efecto que los aislantes no sobrepasen su temperatura de servicio. Las tablas de conductores consignan : Temperatura ambiente = 30°C. Numero de conductores por ducto = 3

Capacidad de transporte de los conductores Finalmente la capacidad de transporte de los conductores queda consignada a la siguiente expresión : Donde: · : Corriente admisible corregida (A) : Factor de corrección por N° de conductores. : Factor de corrección por temperatura. · : Corriente admisible por sección según tablas (A) .

FACTORES DE CORRECCIÓN FACTORES DE CORRECCIÓN POR CANTIDAD DE CONDUCTORES “ “ Cantidad de Conductores Factor 4 a 6 0.8 7 a 24 0.7 25 a 42 0.6 Sobre 42 0.5

FACTORES DE CORRECCIÓN FACTORES DE CORRECCIÓN POR TEMPERATURA AMBIENTE Secciones Milimetricas “ “ Temperatura Ambiente ° C Factor Mas de 30 hasta 35 0.9 Mas de 35 hasta 40 0.87 Mas de 40 hasta 45 0.8 Mas de 45 hasta 50 0.71 Mas de 50 hasta 55 0.62 FACTORES DE CORRECCIÓN POR TEMPERATURA Secciones AWG “ “ Temperatura Ambiente ° C Temperatura de servicio 60 ° C 75 ° C Mas de 30 hasta 40 0.82 0.88 Mas de 40 hasta 45 0.71 0.82 Mas de 45 hasta 50 0.58 0.75 Mas de 50 hasta 55 0.41 0.67 Mas de 55 hasta 60 - 0.58 Mas de 60 hasta 70 - 0.35

EJEMPLO 1 De tablas por factor de corrección: Luego : Verificar la capacidad de transporte de un conductor en las sig...... condiciones : 2 Sc = 2.5 mm Tamb.= 37 ºC. Nº de cond./ ducto = 5 De tablas por factor de corrección: fN =0.8 fT =0.87 IT =20 (A) Luego :

DIMENSIONAMIENTO POR VOLTAJE DE PERDIDA Al circular una corriente eléctrica a través de los conductores ; se produce una caída de tensión que responde a la siguiente expresión : Vp = I * Rc · Vp : Voltaje de Pérdida (V) · I : Corriente de Carga (A) · Rc : Resistencia de los Conductores (Ohm)

RESISTENCIA DE UN CONDUCTOR ELECTRICO La resistencia de un conductor eléctrico esta dado por la siguiente expresión: k* r * l Rc = A 2 · r : Resistividad especifica del Conductor (Ohm-mm / m ) (rCu = 0.018 (Ohm-mm / m ) ) · l : Longitud del conductor ( m ) · A : Sección de Conductor ( mm )

DIMENSIONAMIENTO POR VOLTAJE DE PERDIDA Finalmente la expresión , para Determinar la sección del conductor en función del Vp queda : k * r * l 2 A = * I (mm ) Vp

CALCULO DE ALIMENTADORES La exigencia establece que la Pérdida de Tensión en la Línea no debe exceder a un 3 % la “ Tensión Nominal de Fase “ ; siempre que la pérdida de voltaje en el punto mas desfavorable de la instalación no exceda a un 5 % de la tensión nominal. CALCULO DE ALIMENTADORES Para determinar la sección de los conductores que alimentan a un conjunto de Cargas ( Alimentadores ) , se procede según la siguiente situación : · Alimentadores con Carga Concentrada. · Alimentadores con Carga Distribuida.

ALIMENTADORES CON CARGA CONCENTRADA En los Alimentadores con carga concentrada , el centro de carga se sitúa solo a una distancia del punto de Empalme o alimentación del sistema. Alimentación I Carga l

Sección del Conductor La Expresión para determinar la sección del Conductor es: k * r * l 2 A = * I ( mm ) Vp k = 2 (Alimentadores Monofásicos) k = 1 (Alimentadores Trifásicos)

EJEMPLO 2 Se tiene un alimentador monofásico con carga concentrada , que presenta las sig..... características: L = 60 m. r = 0.018 (Ohm-mm / m ). I = 10 A. Vp = 6.6 V. 2* r * L * I 2 * 0.018 * 60 * 10 2 S = = = 3.27 mm Vp 6.6

ALIMENTADORES CON CARGA DISTRIBUIDA En la situación que las cargas se encuentren distribuidas a lo largo de la línea , se presentan dos criterios para el Dimensionamiento de Conductores : I1 I2 I3 I4 I5 · Criterio de Sección Constante. · Criterio de Sección Cónica.

CRITERIO DE SECCION CONSTANTE La Sección del Alimentador, es Constante en toda su extensión i 2 i 3 i 1 l1 l2 l3 i1; i1; i3 : Corrientes de rama de los consumos asociados al Alimentador (A) · l 1 ; l 2 ; l 3 : Longitud de cada uno de los tramos del Alimentador (m)

CRITERIO DE SECCION CONSTANTE La expresión de Cálculo resulta ser: k * r 2 A = ( l1 * i1 + l2 * i2 + l3 * i 3 ) ( mm ) Vp k = 2 (Alimentadores Monofásico k = 1 (Alimentadores Trifásicos)

EJEMPLO 3 Se tiene un alimentador monofásico con carga distribuida , que presenta las sig..... características: 10 A 20 A 50 A 30 m 80m 180m r = 0.018 (Ohm-mm / m ) ; Vp = 6.6 V S = (2* r / Vp ) * ( L1*i1 +L2*i2 + L3*i3 ) 2 S =(2 * 0.018 / 6.6 ) * ( 30* 10 + 80*20 + 180*50 ) = 59.45 mm

CRITERIO DE SECCIÓN CÓNICA La Sección del conductor Disminuye a lo largo del Alimentador. I 1 I 2 I 3 I 1 = i1 + i2 + i3 (A) I 2 = i2 + i3 (A) I 3 = i3 (A) i 1 i 3 i 2 L2 L3 L1

CRITERIO DE SECCIÓN CONICA La sección del Alimentador se determina a través de la Densidad de corriente constante. Vp 2 d = ( A/mm) k* r * L T L T= L 1 + L 2 + L 3 (m) k = 2 (Alimentadores Monofásico k = 1 (Alimentadores Trifásicos)

CRITERIO DE SECCIÓN CONICA A1 = ( mm ) d I 2 2 A2= ( mm ) I 3 2 A3 = ( mm )

EJEMPLO 4 Se tiene un alimentador monofásico con carga distribuida , que presenta las sig. características: 80 A 70 A 50 A 10 A 20 A 50 A 180m r = 0.018 (Ohm-mm / m ) ; Vp = 6.6 V Vp 6.6 2 d = = = 1.01 ( A/mm) 2* r * L T 2 * 0.018 * 180

CRITERIO DE SECCIÓN CONICA A1 = = = 72.72 ( mm ) d 1.1 I 2 70 2 A2= = = 63.63 ( mm ) d 1.1 I 3 50 2 A3 = = = 45.45 ( mm ) d 1.1

SOLICITACION ANTE LOS CORTO Circuitos Los Conductores antes las solicitaciones de los corto circuitos , responden según su capacidad de disipación Térmica : 2 i * t t ( s ) S1 > S2 >S3 S 1 S2 S3 Icc (A)

SOLICITACION ANTE LOS CORTO CIRCUITOS ZONAS t (s) 1 :Normal 2 :Sobrecarga 3 :Corto Circuito 1 2 3 I (A) Curva de operación de un disyuntor