EQUILIBRIO DE FASES DE SUSTANCIAS PURAS

Slides:



Advertisements
Presentaciones similares
Introducción: Calor y Temperatura Primer Principio Segundo Principio
Advertisements

FUNDAMENTOS DE QUÍMICA Especialidad Química Industrial Curso 2004/05
PROPOSICIONES SOBRE EL SEGUNDO PRINCIPIO DE TERMODINAMICA
Termodinámica química
PROPIEDADES DE SUSTANCIAS PURAS
TERMOQUÍMICA Josiah Willard Gibbs (1839 – 1903)
CONCEPTOS BÁSICOS: FASES Y TRANSICIONES DE FASE
Objetivo de la Fisicoquímica
CAMBIOS DE ESTADO.
MATERIALES PARA INGENIERÍA
Tema 4 Equilibrio de Fases.
PRESENTACION Procesos Isobáricos MAESTRIA ENSEÑANZA DE LA FISICA
ECUACIONES DIFERENCIALES PARCIALES
DETERMINACIÓN EXPERIMENTAL DE LA PRESIÓN DE VAPOR DE UN LÍQUIDO PURO
ECUACION DE ESTADO Para un sistema cerrado, simple y compresible toda propiedad es función de otras dos. En particular, V y E son funciones independientes.
Segundo y Tercer Principio
Unidad Termoquímica.
QUIMICA FISICA BIOLOGICA PROPIEDAD MOLAL PARCIAL
Química 2º bachillerato
Criterio de espontaneidad: DSuniv > 0
FUNDAMENTOS DE TERMODINÁMICA
TERMOQUÍMICA.
Termodinámica.
ANALISIS TERMODINAMICO DE UN PROCESO
TERMODINÁMICA.
Propiedades en cambio de fase
TERMODINÁMICA TÉCNICA
Termodinámica Ciencia macroscópica que estudia las relaciones entre las propiedades de un sistema en equilibrio y el cambios del valor de éstas en los.
MATERIA Y ENERGIA Prof. Valeria del Castillo.
CONDICIONES DE EQUILIBRIO
GAS IDEAL Generalización de los experimentos: Boyle-Mariotte
Termodinámica.
Energía libre de Gibbs, entropía y equilibrio
“TERMODINÁMICA: GASES IDEALES Y GASES REALES”
TERMODINAMICA I: CONCEPTOS GENERALES PRIMER PRINCIPIO
Energía interna, calor y trabajo
Universidad Nacional Santiago Antúnez de Mayolo
Ayudas visuales para el instructor Calor, trabajo y energía. Primer curso de termodinámica © 2002, F. A. Kulacki Capítulo 12. Módulo 2. Transparencia 1.
CRITERIOS DE ESPONTANEIDAD
Termodinámica Introducción
MATERIA Y ENERGÍA ARTESANOS DEL MUNDO
LOS ESTADOS DE LA MATERIA Y SUS CAMBIOS DE ESTADO
UNIDAD I: TERMOQUÍMICA Capítulo 1: FUNDAMENTOS DE LA TERMOQUÍMICA
Unidad 4 Termoquímica.
INSTITUTO POLITÉCNICO NACIONAL
Consecuencias de la 1° Ley
CALOR Y TEMPERATURA Daniela Sandoval 11:A.
Fases de la materia Se denomina Fase a toda parte homogénea y físicamente distinta de un sistema, separadas de las otras partes del sistema por una.
TERMODINÁMICA: Ciencia que estudia las transferencias energéticas que acompaña a los procesos físicos y químicos.
TERMODINÁMICA Elementos de Termodinámica Energía, Calor y Trabajo
…ha llegado la conexión.. Consideremos un sistema macroscópico cuyo macroestado pueda especificarse por su temperatura absoluta T o por otra serie de.
UNIDAD IV: SOLIDOS.
Universidad Central del Ecuador
1º BTO.
Examen parcial: Aula: :30 FÍSICA I GRADO
Introducción: Calor y Temperatura Primer Principio Segundo Principio
los estados de la materia
Entropía y desorden. Segundo principio de la termodinámica.
TEMA 5: TERMOQUÍMICA QUÍMICA IB.
PROPIEDADES DE LAS SUSTANCIAS PURAS
Lic.Andrea Saralegui1 Termodinámica II 2do principio y espontaneidad.
Noviembre, 2013 Principios de geotermia Conceptos termodinámicos y estimación preliminar de potenciales energéticos.
TERMOQUÍMICA.
Departamento de Ciencia y Tecnología QUIMICA 1 Comisión B Dra. Silvia Alonso Lic. Evelina Maranzana
Bioenergética.
Termodinámica Tema 9 (primera parte). Termodinámica - estudia los cambios de energía que se producen en un sistema cuando cambia de estado - estudia los.
Reacción química y energía Energía interna Entalpía
química de los compuestos orgánicos
Primer Principio de Termodinámica. PRIMER PRINCIPIO LA ENERGÍA DEL UNIVERSO SE CONSERVA La energía potencial se transforma en energía cinética La pérdida.
ORGANIZACIÓN DE LA CLASE
Transcripción de la presentación:

EQUILIBRIO DE FASES DE SUSTANCIAS PURAS

Al inicio del curso decíamos que…

Calcular flujos de energía El ingeniero utiliza la termodinámica para abordar dos tipos de problemas: Calcular flujos de energía Caracterizar estados de equilibrio

Ahora vamos a establecer los Criterios termodinámicos de equilibrio

DEPENDEN DE LAS RESTRICCIONES IMPUESTAS AL SISTEMA

CERRADO, ISOTÉRMICO, con límites fijos CERRADO, ISOTÉRMICO, ISOBÁRICO SISTEMA RESTRICCIONES EVOLUCIÓN EQUILIBRIO ESTABILIDAD AISLADO U=cte V=cte S creciente CERRADO, ISOTÉRMICO, con límites fijos T=cte A decreciente CERRADO, ISOTÉRMICO, ISOBÁRICO P=cte G decreciente S máxima < 0 A mínima > 0 G mínima > 0

estado de equilibrio estable Examinaremos las condiciones para la existencia de un estado de equilibrio estable en un sistema de un componente, permitiendo que se presente en varias fases

Describimos el modelo del sistema… un sistema aislado constituido por dos fases de una misma sustancia, separadas por una interfase, permeable (abierta al intercambio de materia) elástica (abierta al intercambio de trabajo de volumen) diatérmica (abierta al intercambio de calor) Las dos fases son homogéneas y la discontinuidad en sus propiedades está localizada en la interfase fase I fase II

Obtener relaciones que vinculen sus propiedades en esa situación. Supongamos que el sistema descripto se encuentra, inicialmente, fuera del equilibrio Nuestros objetivos serán: Caracterizar, en términos de sus propiedades intensivas, la situación final de equilibrio a la cual llegará. Obtener relaciones que vinculen sus propiedades en esa situación.

Haremos uso de los balances de materia, energía y entropía, y las relaciones termodinámicas que estudiamos en la unidad anterior.

Para cada fase

Conservación de las propiedades extensivas

…pero la entropía es una propiedad extensiva no conservada:

Aplicando lo anterior al sistema total…

Cuando el sistema aislado llega al equilibrio: … lo único que garantiza que dS sea CERO en la expresión anterior, para cualquier variación de energía interna, volumen y número de moles en cada fase, es que los tres paréntesis sean CERO.

CONCLUIMOS… Las condiciones para la existencia de un EEE en un sistema de un componente, con varias fases, son: La temperatura es la misma en todas las fases en equilibrio, La presión es la misma en todas las fases en equilibrio, La Energía Libre de Gibbs molar es la misma en todas las fases en equilibrio.

Analicemos, entonces, el comportamiento de esta función “G molar para cada fase pura”, en función de P y T:

Expresión de la Energía Libre de Gibbs molar para las diferentes fases puras, a T cte: GAS IDEAL LÍQUIDO INCOMPRESIBLE, Y SÓLIDO

Expresión de la Energía Libre de Gibbs molar para las diferentes fases puras, a P cte: Desestimando la variación de la entropía molar con la temperatura, se puede considerar que esta expresión es válida para cualquier fase.

Primeras derivadas de la Energía Libre de Gibbs molar:

Gráficos de Energía Libre de Gibbs Molar y su primera derivada en función de P, a T constante sólido líquido vapor Pv del líquido Vmolar

Gráficos de Energía Libre de Gibbs Molar y su primera derivada en función de T, a P constante sólido líquido vapor Tvaporización del líquido Smolar

Igual Gmolar→equilibrio (coexistencia de fases) Propiedades de “transición de fase” de una sustancia: Temperatura de transición Presión de transición Entropía molar de transición Volumen molar de transición

DIAGRAMA DE FASES DEL DIÓXIDO DE CARBONO

REGLA DE LAS FASES, de GIBBS, para sistemas con un componente y P fases F grados de libertad P número de fases F = número de variables – número de restricciones Número de variables = 2P Número de restricciones = 3(P-1) F = 2P – 3(P-1) F = 3-P

Al aplicar la regla de las fases de Gibbs al diagrama de fases de una sustancia pura resulta que: F = 3 - P las áreas monofásicas tienen dos grados de libertad , las curvas de coexistencia uno, y el punto triple es un invariante.

Al aumentar la temperatura Al aumentar la temperatura . Disminuye la diferencia entre las derivadas de Gmolar respecto de P para el vapor y para el líquido. A la “Temperatura Crítica”: ¡LOS VOLÚMENES MOLARES Y, POR LO TANTO, LAS DENSIDADES SON IGUALES! Se trata de una única fase.

Al aumentar la presión Disminuye la diferencia entre las derivadas de Gmolar respecto de T para el vapor y para el líquido. A la “Presión Crítica”: Consecuentemente, se anula la entalpía de vaporización, ¡pues no hay “vaporización”!

Se llaman TRANSICIONES DE PRIMER ORDEN a aquellas en las que la discontinuidad aparece en las primeras derivadas de la función que describe el sistema (asociadas al volumen molar y la entropía molar) Ejemplos de transiciones de primer orden: vaporización, fusión, sublimación. En las transiciones DE SEGUNDO ORDEN la función y su primera derivada son contínuas en los puntos de transición y la discontinuidad aparece en las segundas derivadas (asociadas a la compresibilidad isotérmica, y a la capacidad calorífica) Es el caso del Punto Crítico.

Una sustancia que se encuentra a una temperatura y presión mayores que su PC y TC se denomina FLUIDO SUPERCRÍTICO, y posee interesantes propiedades de transporte (baja viscosidad y tensión superficial, altos coeficientes de difusión y de trasferencia de calor). Por esa razón, desde hace un par de décadas se estudia una variedad de aplicaciones para estos fluidos, como por ejemplo: fluidos de transferencia de calor solventes de extracción, en industria alimentaria solventes en medios de reacción, en reemplazo de los solventes orgánicos tradicionales, que en su mayoría presentan problemas ambientales.

Ahora vamos a generar la ecuación de las curvas de equilibrio:

ECUACIÓN DE CLAPEYRON

Notemos que la ecuación de Clapeyron no es otra cosa que… LA ECUACIÓN QUE REPRESENTA LAS CURVAS DE COEXISTENCIA DE DOS FASES PURAS EN EL DIAGRAMA DE FASES DE LA SUSTANCIA.

Incorporemos, ahora, algunas en la ecuación de Clapeyron aproximaciones en la ecuación de Clapeyron Cuando una de las fases en equilibrio es el vapor de la sustancia, se puede desestimar el volumen molar de la fase condensada frente al del vapor, y, si consideramos válido que el vapor se comporte como un gas ideal,

ECUACIÓN DE CLAUSIUS-CLAPEYRON

Si, además, se desestima la variación con la temperatura de las entalpías de vaporización o sublimación (según corresponda), ésto lleva a las siguientes expresiones integradas:

ECUACION DE CLAUSIUS- CLAPEYRON (expresión integrada entre dos temperaturas y presiones)

ECUACION DE CLAUSIUS- CLAPEYRON (integración genérica)

Esta ecuacion permite calcular la presion de vapor de un liquido o un solido a una temperatura, conociendo su valor a otra y su entalpia de transicion correspondiente. Tambien se puede estimar la temperatura de ebullicion normal de una sustancia conociendo su presion de vapor a una temperatura y su entalpia de vaporizacion. Además, es posible estimar la entalpia de vaporizacion o sublimacion de una sustancia conociendo sus presiones de vapor a varias temperaturas. Etc…

ERRORES Los errores cometidos al introducir las aproximaciones que llevan a la ecuación de Clausius-Clapeyron, disminuyen en tanto se trabaje lejos del punto crítico y en rangos de temperatura no muy grandes. De todas maneras, siempre es aconsejable utilizar la ecuación sin aproximaciones, siempre que se disponga de datos confiables de densidad de las fases.