La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Respiración y Circulación en Peces

Presentaciones similares


Presentación del tema: "Respiración y Circulación en Peces"— Transcripción de la presentación:

1 Respiración y Circulación en Peces

2 Generalidades Tipos de respiración: Órganos respiratorios:
Respiración branquial Respiración tegumentaria Respiración pulmonar (dipnoideos) Órganos respiratorios: Branquias Pulmones* Laberintos Respiración intestinal

3 Generalidades, continuación
Sistema circulatorio cerrado Tienen sangre (Hb) Uno o más corazones La respiración y circulación están controladas por el SNC La regulación de los mecanismos es nerviosa y hormonal

4 Respiración Tegumentaria en Peces
Según la intensidad de respiración cutánea se separan tres grupos ecológicos de animales acuáticos: Adaptados a déficit permanente de OD, respiración cutánea 17-22% Acipenseridae (esturiones) a pesar de los escudetes tegumentarios alcanzan 12% de respiración cutánea Peces de aguas bien oxigenadas, respiración cutánea 3-9%

5 Respiración Branquial
Principal mecanismo de respiración en peces Este mecanismo se pierde en el aire Aún en peces con respiración aerea hay branquias El desarrollo, área y eficiencia branquial están en función de la actividad y fisiología respiratoria del pez

6 Funciones de las branquias
Respiratoria Excretoria Osmorregulación Branquias de un túnido

7 Estructuras de la Respiración Branquial
Cámara branquial Opérculos o aberturas branquiales Ventilación facilitada por la bomba bucal-opercular Ventilación forzada (ram)

8 Adaptaciones para la respiración aérea en Chanidae, Channa
Tomado de:

9 Adaptaciones para la respiración aérea en Anabantidae, Ctenopoma
Tomado de:

10 Diagrama del laberinto que se encuentra en los peces con respiración aérea conocidos como laberíntidos a los que pertenecen los beta.

11 Adaptaciones para la respiración aérea en Clarridae, Clarias
Tomado de:

12 Adaptaciones para la respiración aérea en Heteropneustidae, Heteropneustes
Tomado de:

13 Configuraciones Branquiales en Peces
La estructura de las branquias en los peces varía de acuerdo a su posición en la escala evolutiva. En peces pueden estar en bolsas y presentar aberturas branquiales; ser septados y presentar aberturas branquiales; o presentar una cámara branquial.

14 Sistema Branquial de una Lamprea
Bolas branquiales (GP) y aorta media ventral (MVA)

15 Mecanismos de Creación de la Corriente Ventilatorio
Bomba bucal-opercular: Presente en todos los peces Puede eliminarse durante nado rápido Ventilación ram Presente en especies migratorias o de nado rápido También presente en condrictios Puede aprovechar la alimentación

16 Organismos que presentan ventilación ram

17 Funcionamiento de la Bomba Bucal-Opercular

18 Serie de movimientos que crean la corriente ventilatoria en peces a través de la bomba bucal-opercular

19 Relación Respiración-Circulación
La respiración y circulación se complementan para hacer el mecanismo más eficiente Se deben intercambiar los gases respiratorios en las branquias El mecanismo de intercambio es un mecanismo de contracorriente muy eficiente

20

21

22 Flujo sanguíneo en peces que favorece el intercambio gaseoso

23 Flujo sanguíneo en peces que favorece el intercambio gaseoso

24 Esquema de la Circulación

25 Difusión de Oxígeno del Agua a la Sangre

26 Corazón de un elasmobranquio
El Corazón en los Peces Corazón de un elasmobranquio Corazón de un pez óseo

27 Diagrama Generalizado del Corazón de un Pez

28 Comparación del corazón de un elasmobranquio y un teleosteo
Obsérvese la diferencia en el pericardio

29 El corazón de los peces pulmonados
Corazón de Protopterus al que le removieron el pericardio. B= bulbo, A= atrio, V=ventrícula, P= pericardio. Nótese que tiene cuatro cámaras

30 Latidos del corazón en elasmobranquios
Debido al pericardio duro la contracción del corazón es ligeramente distinta También presentan un canal pericárdico que puede incrementar el volumen cardíaco

31 Anatomía del Corazón de un Mamífero Comparado con un Teleosteo y un Elasmobranquio
(Farrell, 1991)

32 Corazones accesorios Su función es ayudar a retornar la sangre al corazón (sangre venosa) Funcionan con la ayuda de los movimientos del nado o tienen latidos propios Con frecuencia se encuentran cerca de las aletas, cola o zonas de inflexión por movimiento En peces de nado ondulatorio o peces que son parásitos (lampreas y mixinos)

33 Corazones Accesorios Se localizan especialmente en cola o en la base de las aletas pectorales. Se localizan cercanos a senos donde se colecta la sangre venosa que debe ser retornada al corazón.

34 Configuración del Sistema Circulatorio en Peces
Un único circuito Casi toda la sangre debe pasar por las branquias o por el órgano de intercambio gaseosos Tienen venas y arterias Condrictios tienen circulación coronaria Tienen sistema linfático Pueden tener corazones accesorio

35 Teleosteo con respiración branquial

36 Teleosteo con Respiración Aerea

37 Peces pulmonados africanos

38 Diagrama general del sistema circulatorio de un pez óseo

39

40 Componentes sanguíneos
Leucocitos Eritrocitos Presentan diferentes Hb dependiendo del hábitat, pueden también variar de acuerdo a la edad y estado fisiológico En algunos hay glicoproteínas anti-coagulatnes Presentan proteínas anti-shock

41 Eritrocitos Eritrocitos humanos Eritrocitos de peces

42 Mecanismo de Transporte y Entrega de Oxígeno a los Tejidos
El principal mecanismo de intercambio es la difusión Algunas veces se requiere de otros mecanismos de entrega La Hb se afecta con el pH y otras sustancias, se “envenena”

43 Cotransporte oxígeno-dióxido de carbono

44 Efecto de Bohr La disminución en el pH de la sangre causa una disociación entre la molécula de Hb y el oxígeno, lo que ocasiona que éste se libere Este mecanismo se utiliza para liberar el oxígeno a los tejidos El pH puede disminuir debido a: Dióxido de carbono Ácido láctico Concentración de iones hidronio

45 Efecto de Bohr

46 Importancia del Efecto de Bohr
Ayuda a liberar O2 a los tejidos En caso de ejercicio o contracción muscular extremos se producirá lactato disminuyendo el pH y menor fijación de O2 en las branquias, lo que puede causar la muerte de peces hiperactivos Para contrarrestar este problema muchos peces activos tienen Hbs que son insensibles a pH ácidos. Estas Hb no presentan el efecto de Bohr

47 Efecto de Root Efecto que tiene el CO2 sobre la fijación de oxígeno a la Hb, no está relacionado con el pH CO2 limita la saturación de la Hb con oxígeno CO2 se fijará a un extremo amino de la Hb limitando su capacidad de fijación al oxígeno El efecto Root determina la capacidad de carga de O2 de la Hb y no su afinidad para fijarse al O2

48 Efecto Root

49 Oxigenación de Tejidos Especiales
Ciertos tejidos como los ojos y el cerebro pueden necesitar más oxígeno que el resto de los tejidos del cuerpo La vejiga gaseosa debe ser llenada con gas que produzca el pez

50 Pseudobranquias Para la oxigenación de los ojos cuando se tiene una pseudobranquia opercular En la pseudobranquia la sangre es titrada para causar los efectos de Bohr y Root en la sangre La retina libera concentraciones muy bajas de ácido lo suficiente para liberar el oxígeno de la Hb En la retina se encuentra una rete mirable coroidea que causa concentración de oxígeno muy alta y presión parcial de oxigeno también que causa la oxigenación constantemente alta necesaria para el ojo

51 Sistema de rete mirable coroidea en peces que necesitan buena visión

52 LA VEJIGA GASEOSA (vejiga natatoria)

53 Vejiga Gaseosa Característica de peces verdaderos
Órgano único y especializado Funciones: Flotabilidad (principal) Accesorio para la respiración (similar a un pulmón) Producción y percepción de sonido (comunicación) Principalmente en peces mesopelágicos (primeros 200m) y en peces bentopelágicos (cerca del fondo hasta 2000 m) Ausente en condrictios

54 Anatomía de la Vejiga gaseosa
Fisotomos: conexión directa entre vejiga y esófago a través de un conducto neumático (peces más primitivos) Fisoclistos: no existe conexión entre el tracto digestivo y la vejiga Normalmente en posición dorsal justo debajo de los riñones Presenta dos regiones una secretora y una reabsorbente

55

56 Anatomía de la vejiga gaseosa

57 Mecanismo de llenado de la Vejiga Gaseosa
La sangre pasa por el área de llenado pero no por la de reabsorción Se emplea el mismo mecanismo de liberación de oxígeno que en los otros tejidos El gas se transfiere a través de la glándula de gas. Las células de esta glándula producen activamente CO2 y ácido láctico para bajar el pH de la sangre

58 Glándula de Gas Adicionalmente al efecto de Bohr y efecto de Root, el lactato tiene un efecto “salinizante” que contribuye al llenado de la vejiga y a evitar que esta se vacíe

59 Una vez la vejiga está llena el sistema de intercambiadores de corriente evita que el gas se pierda a través del sistema circulatorio del animal.

60 Absorción de gas (desinflado de la vejiga)
Fisóstomos: abren válvula neumática y liberan el gas por el tracto digestivo Fisoclistos: reabsorben el gas en la glándula oval (grupo de capilares en la pared dorsal de la vejiga, aislada del lumen por un esfínter). Al abrirse el esfínter los capilares entran en contacto con el gas que se difunde a la sangre y de allí al torrente sanguíneo para excretarse por las branquias

61


Descargar ppt "Respiración y Circulación en Peces"

Presentaciones similares


Anuncios Google