La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

PULSAR WIND NEBULAE IN EVOLVED SUPERNOVA REMNANTS John M. Blondin, Roger A. Chevalier, Dargan M. Frierson Alumno: Cristian F. Guevara N. Profesor: Simon.

Presentaciones similares


Presentación del tema: "PULSAR WIND NEBULAE IN EVOLVED SUPERNOVA REMNANTS John M. Blondin, Roger A. Chevalier, Dargan M. Frierson Alumno: Cristian F. Guevara N. Profesor: Simon."— Transcripción de la presentación:

1 PULSAR WIND NEBULAE IN EVOLVED SUPERNOVA REMNANTS John M. Blondin, Roger A. Chevalier, Dargan M. Frierson Alumno: Cristian F. Guevara N. Profesor: Simon Cassasus

2 VELA - Remanente de Supernova - Distancia: 350 pc. - Edad pulsar: ~ 11400 yr. - Gran brillo y tamaño angular ~8°

3 Evolución Nebulosa Pulsar Esta evolución puede ser dividida en fases: Expansión libre en la eyección de la supernova Interacción del remanente SN y el ISM, surge el shock inverso Compresión de la nebulosa por el shock inverso

4 Perfil de densidad del material eyectado Radio del shock frontal R 1 Radio de la nebulosa del pulsar R p Modelo Interacción PWN/SNR α=1.048 n=9 A(n,E sn,v t ) v t (n,E sn,M ej )

5 Modelo Interacción PWN/SNR

6 A los ~10 3 yr ocurren distintos eventos Muerte del pulsar Nebulosa pulsar llega al plateau de eyección (R t =v t · t) Modelo Interacción PWN/SNR

7 Plateau de eyección alcanza shock inverso (Rt=R2) t 2 ~ 3700 yrs t 3 ~1500 yrs

8 Simulación Hidrodinámica 1-D La simulación se basa en el tratamiento de dos fluidos a distintos γ, en donde el visto del pulsar se modela con γ=4/3, y el gas circumestelar con la eyección de la SN con γ=5/3.

9 Simulación Hidrodinámica 1-D

10 Relación entre presión de la nebulosa y el shock inverso a t 3 ~ 0.2 Relación entre el radio de la nebulosa y el radio del shock frontal 0.20 A 0.11 B 0.29 C t=5· 10 12 s

11 Simulación Hidrodinámica 1-D A (solid) B (long dash) C (short dash).

12 Simulación Hidrodinámica 2-D Se utiliza un modelo en 2-D para estudiar inestabilidades de la morfología de la nebulosa del pulsar, asumiendo simetría de reflexión con respecto al ecuador y se mantienen las condiciones iniciales del modelo de 1-D Se diferencia por la inestabilidad de Rayleigh-Taylor del cascaron delgado de la eyección y la rápida mezcla de los gases

13 Simulación Hidrodinámica 2-D

14

15

16 Simulaciones con una distribución de densidad suave en la dirección vertical H=Largo de escala x=1.2

17 Simulación Hidrodinámica 2-D H = 1· 10 19 cm

18 Simulación Hidrodinámica 2-D H = 1· 10 20 cm H = 3· 10 19 cm H = 1· 10 19 cm t~50.000 yr R SNR =1.5 · 10 20 cm

19 Comparación Observaciones Existen filamentos de radio y líneas de campo magnético asociados, por la inestabilidad de Rayleigh Taylor Dirección de la velocidad del pulsar no va al centro de la nebulosa, al existir asimetría en el ISM que la rodea

20 Comparación Observaciones Ocurriría ya que la supernova ocurrió en la posición del pulsar, pero la alta densidad del Norte causó una expansión mayor hacia el Sur, y la asimetría en el frente del shock inverso empujó la nebulosa del pulsar hacia el sur del pulsar La emisión de radio synchroton sería resultado de la inestabilidad de Rayleigh Taylor durante el proceso de aplastamiento, que resulta en gas caliente y termal siendo mezclado con fluidos relativistas


Descargar ppt "PULSAR WIND NEBULAE IN EVOLVED SUPERNOVA REMNANTS John M. Blondin, Roger A. Chevalier, Dargan M. Frierson Alumno: Cristian F. Guevara N. Profesor: Simon."

Presentaciones similares


Anuncios Google