La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

IMÁGENES MÉDICAS: ADQUISICIÓN, INSTRUMENTACIÓN Y GESTIÓN asignatura del IIE ( Núcleo de Ingeniería Biomédica) 4 de junio 2009.

Presentaciones similares


Presentación del tema: "IMÁGENES MÉDICAS: ADQUISICIÓN, INSTRUMENTACIÓN Y GESTIÓN asignatura del IIE ( Núcleo de Ingeniería Biomédica) 4 de junio 2009."— Transcripción de la presentación:

1 IMÁGENES MÉDICAS: ADQUISICIÓN, INSTRUMENTACIÓN Y GESTIÓN asignatura del IIE ( Núcleo de Ingeniería Biomédica) 4 de junio 2009

2 TOMOGRAFÍA POR IMPEDANCIA ELÉCTRICA EIT (Electrical Impedance Tomography) Trabajos de Raul Hartman,

3 El tejido vivo puede ser recorrido por corrientes eléctricas La corriente puede entrar a las células (C de membrana) o fluir alrededor de ellas

4 En bajas frecuencias la corriente fluye alrededor de las células (membranas como aislantes) En altas frecuencias la capacitancia de las membranas permite que la corriente ingrese a las células incrementando el volumen por el cual circula corriente y reduciendo la impedancia.

5 Modelo de la impedancia de los tejidos biológicos como resistencias y capacitores Ri. resistencia del espacio intracelular mientras Rm y Cm resistencia y capacitancia de la membrana. En bajas frecuencias domina Ri + Rm dado que Cm presenta una alta impedancia. PHILIPPSON, M. Les lois de la resistance electrique des tissues vivants. Bull. (St.)Acad. roy. belgique (5) 7:389 (1921),

6 Impedancia del tejido vivo

7 Usos de la diferencia de impedancia El mismo tejido puede variar su impedancia al enfermar –Grant, 1923: a 1KHz un tumor cerebral tiene resistividad = 1/2 tejido normal) –Hossman, 1971): la resistividad cerebral se incrementa hasta en un 100 % durante un golpe –Harreveld, 1962): aumenta hasta un 20 % durante un ataque de epilepsia (No hay muchas aplicaciones)

8 Usos de la diferencia de impedancia Distinguir tejidos diferentes: por ejemplo –Pulmón con aire 7 a 24 ohm metro –Sangre 1.5 ohm metro –Plasma 0.66 ohm metro

9 Sería posible obtener imágenes anatómicas EIT, dado que cada tipo de tejido tiene su resistividad, pero NO HAY DEFINICION Se pueden comparar imágenes de EIT a lo largo del tiempo o antes y después de una lesión Se puede estimar el porcentaje de tejidos diferentes en un miembro (grasa, agua, etc.)

10 Objetivo de EIT Determinar la distribución de conductividad interna en una región definida partiendo de las medidas realizadas sobre su superficie. Las medidas son los voltajes resultantes de la inyección de corrientes conocidas en la región –(o las medidas de corrientes generadas a partir de la aplicación de voltajes sobre la superficie).

11 3D EIT La mayoría de los algoritmos de reconstrucción en 2D asumen que la corriente eléctrica es confinada al plano que contiene a los electrodos. En la realidad, si se analiza el problema en 3D el flujo de corriente se dispersa en todas las direcciones lo que contribuye a la distorsión de la reconstrucción.

12 Métodos de reconstrucción Técnicas Iterativas Utilizan operaciones repetitivas que en cada paso mejoran la imagen. Técnicas de un solo paso. Reconstrucción basada en la linealización del problema inverso obteniendo una solución que corresponde a la variación de conductividades respecto a una distribución de referencia, con menos cálculos on line.

13 Métodos de reconstrucción Newton Raphson – Iterativo Matriz de sensibilidad – Un paso Backprojection – Un paso

14 Principio de funcionamiento Electrodos cutáneos (16, 32, etc.) Inyección de corriente conocida (50 KHz, 5 mA) Determinación de V en todos los demás electrodos. Obtención de la matriz de impedancias Reconstrucción de imagen (“problema inverso”) Presentación de la imagen y de secuencias

15 ESQUEMA GENERAL: SISTEMA DE EIT

16 Esquema de funcionamiento 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 V15 V14V13 V12 V11 V10 V9 V8 V7 V6 V5 V4 V3 I 1 I 2 V15 V14V13 V12 V11 V10 V9 V8 V7 V6 V5 V4 V16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 I 3 V15 V14V13 V12 V11 V8 V7 V6 V5 V16 V1 V10 V9 V10 V14V13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 I 4 V15 V12 V11 V8 V7 V6 V2 V16 V1

17 IMPETOM Sistema de adquisición de datos para tomografía por impedancia eléctrica (Sistema EIT)

18 IMPETOM especificaciones

19  Amplitud inocua (5mA@50kHz)  Corriente de valor constante  No inyecta continua  Voltajes de modo común pequeños  Imágenes dinámicas  Medida tetrapolar  Corrientes constantes  Monofrecuencia  Canales de medida paralelos  16 electrodos

20 IMPETOM circuito de inyección de corriente

21 SISTEMA DE INYECCIÓN DE CORRIENTE  Solución integrada: AD844

22 Secuencia de estimulación y medidas

23 01 02 09 04 05 06 07 08 03 10 11 12 13 14 15 16 MUX 01 02 09 04 05 06 07 08 03 10 11 12 13 14 15 16 MUX 1 2 Fuente de corriente I I 3 4 5 6 7 8 9 10 11 12 13 14 15 16

24 IMPETOM Sistema de medida de voltajes

25 CARACTERÍSTICAS DE LAS SEÑALES MEDIDAS  Sinusoides de 50kHz  Desfasadas de la corriente  Amplitud “modulada” por Z cuerpo  Voltaje: 100  V a 20mV aprox.  Impedancia corporal (10 a 100kHz) mayoritariamente real

26 ESQUEMA GENERAL DE UN CANAL DE MEDIDA

27 S i corriente inyectada V(t) voltaje medido v o dc salida del demodulador

28 INTEGRACION IMPETOM-C PACIENTE AISLACIÓN CONTROL Y DAS GUI USUARIO IMPETOM I

29 DISEÑO DEL DAS ACONDICIONAMIENTO DE SEÑALES AISLACIÓN DE SEÑALES ACONDICIONAMIENTO DE SEÑALES AISLACIÓN DE SEÑALES ADQUISICIÓN Y PROCESAMIENTO DE VOLTAJES (ANALÓGICA) GENERACIÓN DE SEÑALES DE CONTROL (DIGITAL) ACONDICIONAMIENTO DE DATOS TARJETA DE ADQUISICIÓN DE DATOS NATIONAL INSTRUMENTS LPN16 pnp

30 IMPETOM-C

31 Detalle de placa de aislación

32 Impetom C y Placa aislación

33

34

35 IMPETOM Programa e interfaz gráfica (GUI) CONTROL COMPLETO SOBRE EL EQUIPO AUTOMATIZACIÓN DEL PROCESO FACILIDAD DE USO INTUITIVO VERSATIL DISEÑO MODULAR INTERFASE DE MANTENIMIENTO

36 RESULTADOS

37 RECONSTRUCCIÓN EN FANTOMA ORIGINAL

38

39 RECONSTRUCCIÓN EN FANTOMA II

40

41

42 IMPETOM 1994 – 1996 IMPEMAT Medidor de impedancia corporal Cecilia Frugoni Ramiro Escuder, Lauro Artia Dr. Fernando Nieto, FS 1997 Necesidad de obtener imágenes de edema 2000-2002 IMPETOM-I Reconstrucción tomográfica de imágenes de impedanciometría del tórax Raúl Hartman, Jorge Lobo, Mateo Ruétalo, Dr. Walter Olivera, FS. 2000 – 2004 IMPETOM-C Obtención de matriz de impedancias del tórax Adriana Ferreira, Alfredo Rodríguez, Ing. P. Mazzara, Dr. F. Nieto, FS. 2003 – 2005 IMPETOM Tomógrafo por impedancias Santiago González y Andrés Liguori, Dr. Javier Hurtado, FS. 2005 – 2007 IMPETOM 48 Tomógrafo por impedancias de 48 electrodos Walter Quinteros, Dr. Javier Hurtado, FS 2009 – 2010 IMPETOM (tesis) Ing. Eduardo Santos

43 Oferta comercial 2009 Maltron International Sheffield Mark 3.5. Dräger Medical (anestesia) Viasys Health Care, (respiratorio) Goe MF II (University of Goettingen). Sim-Tecknika (Academia de Ciencias Rusa) Lista Wikipedia 2009

44 SUGERENCIAS DE TRABAJO FUTURO  RECONSTRUCCIÓN EN TIEMPO REAL  IMPLEMENTACIÓN DE IMPETOM-I EN UN DSP  DESARROLLO DE UNA PLACA DE ADQUISICIÓN UNICA (p.ej.USB)  PREVISIÓN PARA 3D EIT

45 Comparacion de imágenes

46 Placa de rayos X Fuente UCLA, www.mips.stanford.edu/

47 Tomografía computada Fuente UCLA, www.mips.stanford.edu/

48 Resonancia magnética Fuente UCLA, www.mips.stanford.edu/

49 Estudio de Medicina Nuclear - riñón Fuente UCLA, www.mips.stanford.edu/ Evolución de radioactividad en una Región de Interés (ROI) seleccionada por el operador en las imágenes

50 Imagen PET con 18 F Fuente UCLA, www.mips.stanford.edu/

51 Ecografía obstétrica Fuentes: www.kentmedicalimaging.co.uk www.radiologyinfo.org

52 Tomografía de impedancia eléctrica Fuente UCLA, www.mips.stanford.edu/

53 www.nib.fmed.edu.uy


Descargar ppt "IMÁGENES MÉDICAS: ADQUISICIÓN, INSTRUMENTACIÓN Y GESTIÓN asignatura del IIE ( Núcleo de Ingeniería Biomédica) 4 de junio 2009."

Presentaciones similares


Anuncios Google