La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Tema 2.- Magnitudes y Unidades

Presentaciones similares


Presentación del tema: "Tema 2.- Magnitudes y Unidades"— Transcripción de la presentación:

1 Tema 2.- Magnitudes y Unidades
Magnitud: Propiedad o Cualidad que es susceptible de ser medida y por lo tanto puede expresarse cuantitativamente. Unidades o Sistema de Unidades: Conjunto de referencias (Unidades) elegidas arbitrariamente para medir todas las magnitudes.

2 El ser Humano por naturaleza se empeña en medir, definir, comparar
El ser Humano por naturaleza se empeña en medir, definir, comparar. Por lo tanto desde sus orígenes se estableció la necesidad de medir. Las primeras magnitudes empleadas fueron la longitud y la masa. Aquellas más intuitivas. Para la longitud se estableció como unidad el tamaño de los dedos (pulgadas) y la longitud del pie (pie), entre otros. Algunas sociedades siguen utilizando esta forma de medir. Para la masa , se compararon las cantidades mediante piedras, granos, conchas, etc.

3 Conveniencia: Cada persona llevaba consigo su propio patrón de medida Inconveniencia: Las medidas variaban de un individuo a otro, sin poder realizar equivalencias.

4 Los esfuerzos realizados por Carlomagno, para unificar el sistema de unidades fracasaron debido a que cada señor feudal fijaba por derecho sus propias unidades. A medida que aumentó el intercambio entre los pueblos, se presentó el problema de la diferencia de patrones y surgió la necesidad de unificar criterios.

5 El primer patrón de medida de longitud lo estableció Enrique I de Inglaterra, llamó “YARDA” a la distancia entre su nariz y el dedo pulgar. Le sigue en importancia la “TOESA” creada en Francia, consistía en una barra de hierro con una longitud aproximada de dos metros.

6 Posteriormente, con la revolución francesa se crea el sistema métrico decimal, lo cual permitió unificar las diferentes unidades , y crear un sistema de equivalencias con numeración decimal. También existen otros sistemas métricos como el Sistema métrico inglés, Sistema técnico, y el Sistema usual de unidades en Estados unidos (SUEU) que usan otras unidades de medida. Entre ellos tienen equivalencias. El sistema métrico más actual corresponde al Sistema Internacional de Unidades ( S.I. ) y gran parte de las unidades usadas con frecuencia se han definido en término de las unidades estándar del S.I.

7 Los orígenes del S. I. se remontan al s. XVIII cuando se diseñó el S
Los orígenes del S.I. se remontan al s.XVIII cuando se diseñó el S.Métrico Decimal basado en parámetros relacionados con fenómenos físicos y notación decimal. En 1798 se celebró una conferencia científica incluyendo representantes de los Países Bajos, Suiza, Dinamarca, España e Italia, además de Francia, para revisar los cálculos y diseñar prototipos modelos. Se construyeron patrones permanentes de platino para el metro y el kilogramo. Además aparecieron dos nuevos sistemas derivados del anterior: C.G.S. y el Sistema de Giorgi. La Conferencia General de Pesas y Medidas, que ya en 1948 había establecido el Joule (J) como unidad de energía (1 Cal = 4,186 J), en la 10a Conferencia (1954) adoptó el Sistema MKSA (metro, kilogramo masa, segundo, ampere), preexistente -originado en la propuesta del Profesor G. Giorgi de 1902-, en el cual se incluyó el Kelvin (K) y la Candela (cd), como unidades de temperatura e intensidad luminosa respectivamente.

8 Sistema Internacional de Unidades S.I.
Permite unificar criterios respecto a la unidad de medida que se usará para cada magnitud. Es un conjunto sistemático y organizado de unidades adoptado por convención El Sistéme International d´Unités (SI) esta compuesto por tres tipos de magnitudes i. Magnitudes fundamentales ii. Magnitudes derivadas iii. Magnitudes complementarias

9 i. Magnitudes Fundamentales
El comité internacional de pesas y medidas ha establecido siete cantidades básicas, y asignó unidades básicas oficiales a cada cantidad

10 Magnitudes fundamentales (Son sólo siete)
Ampere Corriente eléctrica mol Cantidad de sustancia cd Candela Intensidad luminosa K Kelvin Temperatura s segundo Tiempo kg kilogramo Masa m metro Longitud Símbolo de la unidad Unidad básica cantidad

11 Cada una de las unidades que aparecen en la tabla tiene una definición medible y específica, que puede replicarse en cualquier lugar del mundo. De las siete magnitudes fundamentales sólo el “kilogramo” (unidad de masa) se define en términos de una muestra física individual. Esta muestra estándar se guarda en la Oficina Internacional de Pesas y Medidas (BIMP) en Francia (1901) en el pabellón Breteuil, de Sévres. Se han fabricado copias de la muestra original para su uso en otras naciones.

12 Definición de “metro” Originalmente se definió como la diezmillonésima parte de un meridiano (distancia del Polo Norte al Ecuador). Esa distancia se registro en una barra de platino iridiado estándar. Actualmente esa barra se guarda en la Oficina Internacional de Pesas y medidas de Francia. Se mantiene en una campana de vacío a 0°C y una atmósfera de Presión

13 Definición actual de “metro” (año 1983)
El nuevo estándar de longitud del S.I. se definió como: La longitud de la trayectoria que recorre una onda luminosa en el vacío durante un intervalo de tiempo igual a 1 / segundos.

14 El nuevo estándar de metro es más preciso, su definición se basa en un valor estándar para la velocidad de la luz. De acuerdo con la Teoría de Einstein , la velocidad de la luz es una constante fundamental cuyo valor exacto es 2, x m/s corresponde aproximadamente a: m/s = km/s

15 Definición de “segundo”
La definición original de tiempo se basó en la idea del día solar, definido como el intervalo de tiempo transcurrido entre dos apariciones sucesivas del sol sobre un determinado meridiano de la tierra. Un segundo era 1 / del día solar medio

16 Definición actual de “segundo” (año 1976)
El nuevo estándar de tiempo del S.I. se definió como: el tiempo necesario para que el átomo de Cesio 133 vibre veces (periodos de la radiación correspondiente a la transición entre dos niveles hiperfinos)

17 Los mejores relojes de cesio son tan precisos que no se adelantan ni se atrasan más de 1 segundo en años

18 Otras definiciones Unidad de temperatura: Kelvin, es la fracción 1 / 273, 16 de la temperatura termodinámica del punto triple del agua Unidad de intensidad luminosa: candela, es la intensidad luminosa en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 540 x 1012 hertz

19 Unidad de corriente eléctrica: Ampere, es la intensidad de una corriente constante que mantenida en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y colocados a distancia de un metro el uno del otro en el vacío , produce entre estos conductores una fuerza determinada por metro de longitud.

20 ii. Magnitudes Derivadas
Es posible medir muchas magnitudes además de las siete fundamentales, tales como: presión, volumen, velocidad, fuerza, etc. El producto o cuociente de dos o más magnitudes fundamentales da como resultado una magnitud derivada que se mide en unidades derivadas.

21 ii. Magnitudes derivadas
unidad básica Símbolo de la unidad Area metro cuadrado m2 Volumen metro cúbico m3 Frecuencia Hertz 1 / s = Hz Densidad de masa kilogramo por metro cúbico kg / m3 Velocidad metro por segundo m / s Velocidad angular radián por segundo rad / s Aceleración metro por segundo cuadrado m / s2

22 Fuerza Newton kg m /s2 = N Presión Pascal N / m2 = Pa Trabajo y energía Joule N m = J Potencia Watt J/s = W Carga eléctrica Coulomb A s = C Resistencia eléctrica Ohm Ω luminosidad Candela por metro cuadrado cd / m2

23 iii. Magnitudes Complementarias
Son de naturaleza geométrica Se usan para medir ángulos magnitud Unidad de medida Símbolo de la unidad Ángulo plano Radián rad Ángulo sólido Esterorradián sr

24 Las unidades del S.I. no se han incorporado en forma total en muchas aplicaciones industriales sobre todo en el caso de aplicaciones mecánicas y térmicas, debido a que las conversiones a gran escala son costosas. Por este motivo la conversión total al S.I. tardará aún mucho tiempo. Mientras tanto se seguirán usando viejas unidades para la medición de cantidades físicas Algunas de ellas son: pie (ft), slug (slug), libra (lb), pulgada (in), yarda (yd), milla (mi), etc.

25 Recordemos El S.I. adopta sólo una unidad de medida para cada magnitud física. El S.I. se compone de: i) M. Fundamentales: son 7, no se derivan de otra. ii) M. Derivadas: corresponden al producto o cuociente de sí misma de dos o más magnitudes fundamentales. iii) M. Complementarias: se usan para medir ángulos.

26 Múltiplos y submúltiplos
Otra ventaja del sistema métrico S.I. sobre otros sistemas de unidades es que usa prefijos para indicar los múltiplos de la unidad básica. prefijos de los múltiplos: se les asignan letras que provienen del griego. prefijos de los submúltiplos: se les asignan letras que provienen del latín.

27 Múltiplos (letras Griegas)
Prefijo Símbolo Factor de multiplicación Deca Da Hecto h Kilo k Mega M Giga G Tera T Peta P Exa E

28 Submúltiplos (Latin) Prefijo Símbolo Factor de multiplicación Deci d
1 / Centi c 1 / Mili m 1 / Micro 1 / Nano n 1 / Pico p 1 / Femto f 1 / atto a 1 /

29 Ejemplos 45 kilómetros = 45 x 1000 metros = 45 000 m
640 µA = 640 x = 0, A 357,29 milimetros = 357,29 x 1 = 0,357 m 1 000

30 Equivalencias más comunes
De Longitud: 1 metro (m) = centímetros (cm) 1 centímetro (cm) = 10 milímetros (mm) 1 metro (m) = milímetros (mm) 1 kilómetro (km) = metros (m) 1 kilómetro (km) = milímetros (mm)

31 Otras equivalencias de longitud
1 pulgada (in) < > 25,4 milímetros (mm) 1 pie (ft) < > 0,3048 metros (m) 1 yarda (yd) < > 0,914 metros (m) 1 milla (mi) < > 1,61 kilómetros 1 metro (m) < > 39,37 pulgadas (in) 1 femtómetro (fm) < > 10 –15 metros (m)

32 Equivalencias de masa 1 kilogramo (kg) < > 1 000 gramos (g)
1 tonelada (ton) < > kilogramos (kg) 1 slug < > 14,6 kilogramos(kg)

33 Equivalencias de tiempo
1 año < > 365,25 días 1 día < > 24 horas (hr) 1 hora (hr) < > 60 minutos (min) 1 minuto (min) < > 60 segundos (s) 1 hora (hr) < > segundos (s) 1 día < > segundos (s) 1 año < > segundos (s)

34 Equivalencias de área área = largo x ancho = longitud x longitud
1 metro cuadrado (m2) < > centímetros2 (cm2)

35 Equivalencias de volumen Volumen = largo x ancho x alto = long x long x long
1 metro cúbico (m3) < > cm3 1 litro (l) < > cm3 1 metro cúbico (m3) < > litros (l)

36

37 Las Unidades en la Legislación Española
-El Sistema legal de Unidades de Medida obligatorio en España es el sistema métrico decimal de siete unidades básicas, denominado Sistema Internacional de Unidades (SI), adoptado en la Conferencia General de Pesas y Medidas y vigente en la Comunidad Económica Europea. Estas son las distintas normativas publicadas en el Boletín Oficial del Estado (BOE): BOE nº 269 de 10 de noviembre de 1967 Ley 88/1967, de 8 de noviembre, declarando de uso legal en España el denominado Sistema Internacional de Unidades (SI) BOE nº 110 se 8 de mayo de 1974 Decreto 1257/1974 de 25 de abril, sobre modificaciones del Sistema Internacional de Unidades, denominado SI, vigente en España por Ley 88/1967, de 8 de noviembre.

38 MUCHAS GRACIAS.


Descargar ppt "Tema 2.- Magnitudes y Unidades"

Presentaciones similares


Anuncios Google