La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

CO2 CO2 H2O H2O CH3 CH2 CHO CHOH HOCH CH2OH n-octano D-glucosa.

Presentaciones similares


Presentación del tema: "CO2 CO2 H2O H2O CH3 CH2 CHO CHOH HOCH CH2OH n-octano D-glucosa."— Transcripción de la presentación:

1 CO2 CO2 H2O H2O CH3 CH2 CHO CHOH HOCH CH2OH n-octano D-glucosa

2 TERMOQUÍMICA Definiciones básicas de la Termodinámica
Energía, calor y trabajo Primera Ley de la Termodinámica: Entalpía (DH) Segunda Ley de la Termodinámica: Entropía (DS) Espontaneidad de las reacciones químicas: Energía libre (DG) Reacciones acopladas

3 DEFINICIONES BÁSICAS DE LA TERMODINÁMICA
SISTEMA ENTORNO Cantidad de materia definida limitada por una superficie cerrada, real o hipotética, donde se realizan transferencias de Energía y/o Masa. CERRADO ENERGÍA ABIERTO MATERIA Y ENERGÍA AISLADO X UNIVERSO

4 DEFINICIONES BÁSICAS DE LA TERMODINÁMICA
SISTEMA ENTORNO Variables de Estado T temperatura Si las variables de Estado INTENSIVAS P no cambian en el tiempo, presión el Sistema está en equilibrio. V volumen EXTENSIVAS n número de moles UNIVERSO

5 DEFINICIONES BÁSICAS DE LA TERMODINÁMICA
SISTEMA ENTORNO Funciones de Estado ENERGÍA DE E energía + (TS ≠ TE ) q calor H DH entalpía + (DV) w trabajo G DG energía libre DE = cambio en la E interna del sistema S DE = Efinal - Einicial DS entropía UNIVERSO

6 La termodinámica es la ciencia que estudia las
ENERGÍA, CALOR Y TRABAJO La termodinámica es la ciencia que estudia las transferencias de energía (calor y trabajo) que acompañan a un cambio de estado en un sistema. energía capacidad para realizar un trabajo calor energía transferida entre dos cuerpos o sistemas trabajo

7 ENERGÍA, CALOR Y TRABAJO PROCESOS TERMODINÁMICOS
ISOTÉRMICOS ISOBÁRICOS ADIABÁTICOS REVERSIBLES IRREVERSIBLES procesos espontáneos

8 ENERGÍA, CALOR Y TRABAJO
w = F x d F = m x a a = v/t v = d/t Sistema MKS Kg x m2/seg2 Kg x m/seg2 m/seg2 m/seg (joule) (Newton) Sistema CGS g x cm2/seg2 g x cm/seg2 cm/seg2 cm/seg (ergio) (dina) P = F/A w = P x DV w = F/A x DV Atm x L 1 atm = 1,013 x 10 5 N / m2 Sistema MKS Kg x m2/seg2 Kg x m/seg2/m2 (joule) (Newton/m2) (Pascal) Sistema CGS g x cm2/seg2 g x cm/seg2/cm2 (ergio) (dina)/cm2 (Bar)

9 ENERGÍA, CALOR Y TRABAJO
Caloría (cal) 1 cal = 4,18 joule 1 joule = 0,24 cal 1 joule = 1 x 107 erg 1 erg = 1 x 10-7 joule PV = nRT 15,5ºC 14,5ºC R = PV/nT R = 1 atm x 22,4 L/1mol x 273 ºK R = 0,082 atm x L /mol x ºK 1 g de H2O 1ºC R = 8,31 J /mol x ºK R = 1,98 cal /mol x ºK Atm x L Joule Caloría

10 ENERGÍA, CALOR Y TRABAJO
ALGUNOS VALORES ENERGÉTICOS 1m 10g azúcar 10g grasa 1g 9,81J 1J 540kJ 17,4kJ 1kJ 1Kg

11 ENERGÍA, CALOR Y TRABAJO
TERMOQUÍMICA El estudio del intercambio de energía entre un sistema y su medio ambiente (termodinámica) permite predecir: Si una reacción química ocurre o no. A B Si los reaccionantes pasan a productos, A B o sea, si la reacción es espontánea o no. En qué medida ocurre el cambio, o sea, las cantidades de productos que se obtienen A B y la cantidad de reaccionantes que quedan sin reaccionar, una vez terminada la reacción, o sea, cuando se alcanza el estado de equilibrio.

12 Einstein (1949) “Una teoría es más impresionante mientras mayor es la simplicidad de sus premisas, más variados los tipos de cosas que relaciona y más extensa el área de su aplicabilidad. Por ello, la termodinámica clásica me ha impresionado profundamente. Es la única teoría física de contenido universal la cual, estoy convencido, dentro de las áreas de aplicabilidad de sus conceptos básicos, nunca será derrocada.”

13 PRIMERA LEY DE LA TERMODINÁMICA
DEint = Ef Ei SISTEMA DEint = Q W “La energía no se crea ni se destruye, sólo se transforma.” ΣDEint = 0 UNIVERSO “La energía total del universo permanece constante.”

14 PRIMERA LEY DE LA TERMODINÁMICA
PDV GASES DEint = Q W a V constante DV = 0 DEint = QV a P constante H = entalpía DEint = QP PDV QP = H DEint = DH PDV DH = DEint PDV DH = DEint DnRT LÍQUIDOS a P constante DV = 0 DH = DEint DH = QP

15 PRIMERA LEY DE LA TERMODINÁMICA
Variación de entalpía estándar de formación = DHºf P = 1 atm , T = 25 °C, concentración = 1 M DHºf Elementos = 0 DHºf Compuestos ≠ 0 Variación de entalpía estándar de reacción = DHºr DH°r = ΣDH°f(P) - ΣDH°f(R) DHºr < 0 REACCIÓN EXOTÉRMICA DHºr > 0 REACCIÓN ENDOTÉRMICA

16 PRIMERA LEY DE LA TERMODINÁMICA
Propano + O CO2 + H2O C3H8 (g) + 5O2 (g) 3CO2 (g) + 4H2O (l) DHºf Elementos = 0 DHºf C3H8 = ,83 Kcal DHºf O2 = 0 DHºf CO2 = – 94,05 Kcal DHºf H2O = – 68,32 Kcal DH°r = ΣDH°f(P) - ΣDH°f(R) 3DH°f CO2 + 4DH°f H2O – (DH°fC3H DH°f O2 ) DH°r = 3(– 94,05 Kcal) + 4(– 68,32 Kcal) – (24,83 Kcal + 5 x 0 Kcal) DH°r = – 580,26 Kcal DH°r = ...este DH° es el calor de combustión

17 Ley de Hess PRIMERA LEY DE LA TERMODINÁMICA
El cambio de energía calórica que acompaña a una reacción química a volumen y presión constante (ΔH) es independiente del número y de la naturaleza de los estados intermedios. C(grafito) + ½ O2(g) = CO(g) DHºr = ,4 kcal CO(g) + ½ O2(g) = CO2 (g) DHºr = ,6 kcal C(grafito) + O2(g) = CO2 (g) DHºr = - 94,0 kcal

18 Energía o Entalpía de Enlace
PRIMERA LEY DE LA TERMODINÁMICA Energía o Entalpía de Enlace DHr = Σ energía de enlace (ruptura) + Σ energía de enlace (formación) Valor positivo Valor negativo H _ C ≡ C _ H (g) H _ H (g) H _ C _ C _ H (g) H 1 C ≡ C Kcal 1 C _ C ,1 Kcal 2 C _ H (98,8 x 2) Kcal 6 C _ H (- 98,8 x 6) Kcal 2 H _ H (104 x 2) Kcal DHr = , (-83,1 – 592,8) DHr = 599,6 – 675,9 DHr = – 76,3 Kcal

19 SEGUNDA LEY DE LA TERMODINÁMICA
“En todos los procesos naturales la entropía del universo aumenta.” DG = DH - TDS DG = 0 DH = TDS Equilibrio qrev = TDS DS = qrev /T = cantidad de energía calórica por grado Kelvin, que el sistema DS > qirrev /T intercambia cuando el proceso termodinámico se desarrolla en forma reversible.

20

21 SEGUNDA LEY DE LA TERMODINÁMICA
DG < 0 Energía libre DG = 0 no equilibrio equilibrio tiempo no equilibrio equilibrio DS = 0 DS > 0 Entropía tiempo

22 E A B A B ΔH ΔG ΔS TΔS espontaneidad equilibrio DG = D H - TD S
IRREVERSIBLE REVERSIBLE A B A B ΔH ΔG ΔS TΔS DG = D H - TD S DG < 0 E E

23 SEGUNDA LEY DE LA TERMODINÁMICA
Energía libre de Gibbs y condiciones de espontaneidad DG = DH - TDS DS DH < 0 DH > 0 DS > 0 DS > 0 Espontánea a Espontánea a todas las temperaturas temperaturas altas DH < 0 DH > 0 DH DS < 0 DS < 0 Espontánea a No espontánea temperaturas a cualquier bajas temperatura

24 SEGUNDA LEY DE LA TERMODINÁMICA
C6H12O O CO H2O DG = DH - TDS DG = cal/mol TDS = DH - DG DH = cal/mol DS = + 44 cal/ºK DS = DH - DG T DS = – ( ) 298 DS = 13.000 298 DS = + 44 cal/ºK

25 ENERGÍA LIBRE DE GIBBS DG DGº DGº’ aA + bB cC + dD [C]c [D]d Q =
DG = DGº + RT ln Q [A]a [B]b DG = 0 Q = Keq DGº = _ RT ln Keq [R y P]i = 1M, P = 1 atm, T = 298ºK, pH = 0 DGº’ = _ RT ln K’eq [R y P]i = 1M, P = 1 atm, T = 298ºK, pH = 7 K’eq = 1 DGº’ = 0 K’eq > 1 DGº’ < NEGATIVO K’eq < 1 DGº’ > POSITIVO

26 El valor de la constante de equilibrio Keq para la reacción
glucolítica de fosforilación de la fructosa-6-P, catalizada por la enzima fosfofructoquinasa-1, es 254. Calcule el valor de DGº’ para esta reacción a la temperatura de 25ºC. R = 8,315 J/mol ºK FFQ-1 Fructosa-6-P + ATP Fructosa-1,6-bis-P + ADP DGº’ = - RT ln Keq = - 2,3 RT log Keq = - 2,3 RT log Keq = - 2,3 x 8,315 J/mol ºK x 298 ºK x log 254 = - 2,3 x 8,315 J/mol ºK x 298 ºK x 2,4 = - 2,3 x 8,315 J/mol x 298 x 2,4 DGº’ = - 13,68 kJ/mol

27 El valor de DGº’ para la reacción de hidrólisis del ATP es
- 30,5 kJ/mol. Calcule el valor de la Keq a 25ºC. R = 8,315 J/mol ºK. Si disminuye el pH, en qué sentido se desplazará la reacción. ATP-4 + H2O ADP-3 + HPO H+ DGº’ = - RT ln Keq DGº’ = - 2,3 RT log Keq DGº’ log Keq = - 2,3 RT J/mol log Keq = - 2,3 x 8,315 J/mol ºK x 298 ºK log Keq = = 5,35 /antilog ,1 Keq = = 2,24 x 105

28 A → B DG1’º B → C DG2’º A → C DG1’º + DG2’º REACCIONES ACOPLADAS
Glucosa + Pi Glucosa-6-P + H2O DGº’= 3,3 kcal/mol ATP + H2O ADP + Pi DGº’= _ 7,3 kcal/mol Glucosa + ATP Glucosa-6-P + ADP DGº’ = _ 4,0 kcal/mol

29 FOSFORILACIÓN DE ADP POR FOSFOCREATINA
P-creatina + H2O creatina + Pi DGº’ = -43,1 kJ/mol ADP + Pi ATP + H2O DGº’ = +30,4 kJ/mol P-creatina + ADP creatina + ATP DGº’ = -12,7 kJ/mol

30 ESO ES TODO AMIGOS !!!


Descargar ppt "CO2 CO2 H2O H2O CH3 CH2 CHO CHOH HOCH CH2OH n-octano D-glucosa."

Presentaciones similares


Anuncios Google