La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

1 Introducción a las Señales Aleatorias ISAL Capítulo 4: V.A. MúLTIPLE Material de partida: Principios de probabilidad, variables aleatorias y señales.

Presentaciones similares


Presentación del tema: "1 Introducción a las Señales Aleatorias ISAL Capítulo 4: V.A. MúLTIPLE Material de partida: Principios de probabilidad, variables aleatorias y señales."— Transcripción de la presentación:

1 1 Introducción a las Señales Aleatorias ISAL Capítulo 4: V.A. MúLTIPLE Material de partida: Principios de probabilidad, variables aleatorias y señales aleatorias Peyton, Z. & Peebles, Jr. (Capítulo 3) Bartolo Luque Departamento Matemática Aplicada Y Estadística E.T.S.I. Aeronáuticos, UPM. Plaza Cardenal Cisneros, 3 Madrid 28040, Spain. Tf.:

2 2 Variable aleatoria mútiple V.A. BIDIMENSIONAL (v.a. Vectorial; vector aleatorio ) X : R (X v.a.) Y : R (Y v.a.) (X,Y) v.a bidimensional X : R (X v.a.) Y : R (Y v.a.) x

3 3 Variable aleatoria mútiple V.A. BIDIMENSIONAL (v.a. Vectorial; vector aleatorio ) X : R (X v.a.) Y : R (Y v.a.) (X,Y) v.a bidimensional Espacio muestral de Rango Espacio muestral X,Y (NOTA: Transformación v.a múltiple)

4 4 Función de Distribución Conjunta {X x, Y y}={w R| X(w) x, Y(w) y} F XY : R 2 R (x,y) F XY (x,y) =P(X x, Y y)

5 5 Función de Distribución Conjunta (Ej. X,Y v.a discretas)

6 6

7 7 Función de Distribución Conjunta X,Y v.a discretas

8 8 Función de Distribución Conjunta X,Y v.a continuas

9 9 Casos particulares de rangos de v.a. bidimensional X,Y v.a discretas: Rango conjunto de puntos X,Y v.a continuas: Rango superficie X Y X,Y

10 10 Casos: Rango conjunto de líneas

11 11 Casos: Rango conjunto de líneas

12 12

13 13

14 14

15 15

16 16 f.d.p. Conjunta para (x,y) v.as discretas f.d.p. Conjunta para N v.as

17 17

18 18 Para N v.as

19 19

20 20

21 21

22 22 FD y fdp condicionales a un punto (X/Y=y) Definiendo como suceso condicionante B:

23 23 FD y fdp condicionales a un punto (X/Y=y) Para v.a.s continuas, como:

24 24 FD y fdp condicionales a un punto (X/Y=y) Para v.a.s continuas: Y diferenciando con respecto a x, tenemos las f.d.p:

25 25 FD y fdp condicionales a un punto (X/Y=y)

26 26 FD y fdp condicionales a un punto (X/Y=y) Para v.a.s discretas: X={x 1,.. x i...x N } e Y={y 1,... y j..y M }

27 27

28 28 FD y fdp condicionales a un intervalo

29 29 Ejercicio fdp marginales y condicionales: Dada la fdp conjunta de las v.a.s X e Y: 1.- Obtener las fdp marginales de X e Y 2.- Obtener la fdp condicional

30 30 Ejercicio fdp marginales y condicionales: Dada la fdp conjunta de las v.a.s X e Y: 1.- Obtener las fdp marginales de X e Y

31 Obtener la fdp condicional

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39 SUMA de v.as

40 40 SUMA de v.as

41 41 SUMA de v.as

42 42 SUMA de v.as

43 43 SUMA de v.as INDEPENDIENTES La f.d.p de la suma de dos v.as independientes es la convolución de sus f.d.p. individuales

44 44

45 45

46 46

47 47

48 48

49 49 Dos Funciones de Dos variables aleatorias Caracterización de la v.a. Bidimensional (Z,W) (Z,W) será una v.a bidimensional si y sólo si: D Z,W lugar geométrico de los puntos (X,Y) que se transforman en

50 50 Dos Funciones de Dos variables aleatorias Caracterización de la v.a. Bidimensional (Z,W) D Z,W lugar geométrico de los puntos (X,Y) que se transforman en X Y Z W D Z,W

51 51

52 52 Dos Funciones de Dos variables aleatorias Caracterización de la v.a. Bidimensional (Z,W) Procedimiento para la obtención de la f.d.p. de la v.a. Bidimensional (Z,W) Indirectamente derivando la F.D. Calculo directo a través del Teorema Fundamental

53 53 Dos Funciones de Dos variables aleatorias Procedimiento para la obtención de la f.d.p. de la v.a. Bidimensional (Z,W) Calculo directo a través del Teorema Fundamental Análogo al Teorema Fundamental para una función de una v.a unidimensional

54 54 Cálculo DIRECTO DE LA f.d.p de Dos Funciones de Dos variables aleatorias: Teorema Fundamental X Y Z W z z+dz w +dw w y1y1 x1x1 yiyi xixi Quedando la transformación caracterizada por el Jacobiano J(x,y)

55 55 Cálculo DIRECTO DE LA f.d.p de Dos Funciones de Dos variables aleatorias: Teorema Fundamental

56 56 Cálculo DIRECTO DE LA f.d.p de Dos Funciones de Dos variables aleatorias: Teorema Fundamental NOTAR que aparece el Módulo del Jacobiano |J| (ver examen sept. 08) -igual en el T. Fund. para unidimensional- Otras observaciones: Debe resolverse o invertirse g(x,y) y h(x,y) f(z,w) debe, obviamente, quedar en función de las variables z y w Debe identificarse los rangos de validez de las expresiones resultantes

57 57 Cálculo DIRECTO DE LA f.d.p de Dos Funciones de Dos variables aleatorias: Teorema Fundamental Ejercicio 1) Ejercicio 2)

58 58 Uso del Teorema Fundamental en el Método de la Variable Auxiliar 2) Se aplica el Teorema Fundamental 1) Se crea una v.a. auxiliar 3) Se obtiene la fdp EJEMPLO: Z=X+Y (v.a. Auxiliar W=X)

59 59 EJEMPLO: Z=X+Y (v.a. Auxiliar W=X) Teorema Fundamental Si X,Y son v.a.s independientes

60 60 Caracterización parcial de una función de dos v.a.s (análogo a una función de una v.a) Valor Esperado (Media) de una función de dos v.as X,Y: g(X,Y) Veremos que pueden deducirse muchos parámetros útiles relacionados con el valor esperado de una función de dos v.a.s g(X,Y) Z=g(X,Y) Función de n-variables aleatorias

61 61 Caracterización parcial de una función de dos v.a.s (análogo a una función de una v.a) Valor Esperado (Media) de una SUMA de v.as X,Y E[ ], es un operador lineal, si g(X,Y)=aX+bY+c E[aX+bY+c] = aE[X]+bE[Y]+c Para Z=X 1 +X X n E[Z]= E[X 1 ]+E[X 2 ] E[X n ] Valor Esperado del PRODUCTO de v.as X,Y INDEPENDIENTES Z=XY Si X,Y son v.as independientes

62 62 Caracterización parcial de una función de dos v.a.s (análogo a una función de una v.a) VARIANZA de Z v.a SUMA de v.as X,Y INDEPENDIENTES

63 63 Caracterización parcial de una función de dos v.a.s (análogo a una función de una v.a) MEDIA Y VARIANZA de Z v.a COMBINACIÓN LINEAL de v.as X,Y GAUSSIANAS INDEPENDIENTES

64 64 Caracterización parcial de una función de dos v.a.s (análogo a una función de una v.a) Valor Esperado (Media) CONDICIONADA de g(X,Y) CASO PARTICULAR En general: Línea de regresión de Y Línea de regresión de X

65 65 Caracterización parcial de una función de dos v.a.s (análogo a una función de una v.a) MOMENTOS CONJUNTOS de v.a bidimensional Momento no centrado conjunto de orden k,r Correlación de X,Y Covarianza de X,Y Momento centrado conjunto de orden k,r Coeficiente de correlación de X,Y

66 66 INCORRELACIÓN, ORTOGONALIDAD, INDEPENDENCIA Correlación de X,Y Covarianza de X,Y Coeficiente de correlación de X,Y Relación lineal entre X e Y Si es=+-1 => predicción lineal perfecta Incorrelacion: X,Y incorreladas si C XY = 0. por tanto, incorrelacion implica ausencia de relacion X e Y Ortogonalidad: X,Y son ortogonales si R XY = E[XY]=0.

67 67 INCORRELACIÓN, ORTOGONALIDAD, INDEPENDENCIA Incorrelacion: X,Y incorreladas si C XY = 0. por tanto, incorrelacion implica ausencia de relacion X e Y Ortogonalidad: X,Y son ortogonales si R XY = E[XY]=0. Consecuencias: 1.- Si X e Y son independientes, entonces son incorreladas. R XY =E[X]E[Y] La inversa no es cierta! Independencia => ausencia de relación lineal, pero no a la inversa (Ejemplo)

68 68 INCORRELACIÓN, ORTOGONALIDAD, INDEPENDENCIA Incorrelacion: X,Y incorreladas si C XY = 0. por tanto, incorrelacion implica ausencia de relacion X e Y Ortogonalidad: X,Y son ortogonales si R XY = E[XY]=0. Consecuencias: 2. Si X e Y son incorreladas:

69 69 INCORRELACIÓN, ORTOGONALIDAD, INDEPENDENCIA Incorrelacion: X,Y incorreladas si C XY = 0. por tanto, incorrelacion implica ausencia de relacion X e Y Ortogonalidad: X,Y son ortogonales si R XY = E[XY]=0. Consecuencias: 3. Incorrelacion y ortogonalidad son una misma propiedad si al menos una de las dos v.as X,Y tiene media nula. 4. Sin las VAs son ortogonales, entonces E[(X+Y) 2 ]=E[X 2 ]+E[Y 2 ]+2E[XY]= E[X 2 ]+E[Y 2 ] (valor cuadrático medio de (X+Y) = el de X + el de Y)

70 70 ESTIMACIÓN DE UNA Variable Aleatoria (I) Partiendo de un mismo espacio muestral obtienen 2 v.a.s X=x i observable Y=y i no observable Problema: encontrar g(x) tal que: será una estimación de y si g(.) optimiza algún criterio de semejanza entre y e Es posible imponer restricciones a g(x) Estimación Mínimo Cuadrática

71 71 ESTIMACIÓN DE UNA Variable Aleatoria (II) Estimación Mínimo Cuadrática Caso simple: Si g(x)=cte, el mejor estimador posible de Y es g(x)=E[Y]

72 72 ESTIMACIÓN DE UNA Variable Aleatoria (II) Estimación Mínimo Cuadrática Estimador lineal

73 73 ESTIMACIÓN DE UNA Variable Aleatoria (III) El conocimiento de X no aporta información para estimar linealmente Y Estimador lineal X e Y están relacionadas exactamente por una ley lineal es una medida del grado de relación lineal de X e Y

74 74 ESTIMACIÓN DE UNA Variable Aleatoria (IV) g(x) arbitraria Recordar Media CONDICIONADA

75 75 ESTIMACIÓN DE UNA Variable Aleatoria (V) Si X e Y son INDEPENDIENTES X no aporta información para estimar Y Para obtener el estimador no lineal hay que conocer f y (y/x) Para obtener el estimador lineal hay que conocer C XY, Var[X], E[X],E[Y]

76 76 n- VARIABLES ALEATORIAS (I) INDEPENDENCIA TEOREMA

77 77 n- VARIABLES ALEATORIAS (II) TEOREMA Ejemplo: Suma de gaussianas independientes

78 78 n- VARIABLES ALEATORIAS (III) TEOREMAS ASINTÓTICOS Teorema del Límite Central : Si X i son v.as discretas de igual rango :


Descargar ppt "1 Introducción a las Señales Aleatorias ISAL Capítulo 4: V.A. MúLTIPLE Material de partida: Principios de probabilidad, variables aleatorias y señales."

Presentaciones similares


Anuncios Google