La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Probabilidad y Estadística para CEA Mtra. Ma. Del Carmen López Munive Sesión 8 Estimación puntual y por intervalos.

Presentaciones similares


Presentación del tema: "Probabilidad y Estadística para CEA Mtra. Ma. Del Carmen López Munive Sesión 8 Estimación puntual y por intervalos."— Transcripción de la presentación:

1 Probabilidad y Estadística para CEA Mtra. Ma. Del Carmen López Munive Sesión 8 Estimación puntual y por intervalos

2 O La estadística inferencial nos permite estimar características desconocidas como la media de la población o la proporción de la población. O Existen dos tipos de estimaciones usadas para estimar los parámetros de la población: O Estimación puntual, y O Estimación de intervalos

3 ESTIMACIÓN PUNTUAL O Es el valor de un solo estadístico de muestra. ESTIMACIÓN DEL INTERVALO DE CONFIANZA: O Es un rango de números llamado intervalo, construido alrededor de la estimación puntual

4 O El intervalo de confianza se construye de manera que la probabilidad del parámetro de la población se localice en algún lugar dentro del intervalo conocido.

5 3 características principales: 1. La media de la muestra X es una estimación puntal de la media poblacional μ. 2. La media de la muestra puede variar de una muestra a otra porque depende de los elementos seleccionados en la muestra. 3. Existe una confianza especificada de que μ se encuentre en algún lugar en el rango de números definidos por el intervalo.

6 Curva normal para determinar el valor de Z necesario para el 95% de confianza 95% de Confianza μ Escala Z /2= en tablas es ±1.96 Si lo busco en tablas corresponde a unas coordenadas de 1.9 con 6 centésimos El 5% restante: /2=

7 Curva normal para determinar el valor de Z necesario para el 99% de confianza 99% de Confianza μ Escala Z /2= en tablas es ±2.58 Si lo busco en tablas corresponde a unas coordenadas de 2.5 con 8 centésimos El 1% restante: /2 =0.0050

8 Valores más comunes de los niveles de confianza: NIVEL DE CONFIANZA Z αα /2 90% % % NIVEL DE CONFIANZA: Se simboliza con (1- α ) * 100% donde α es la proporción de las colas de la distribución que están fuera del intervalo de confianza. La proporción de la cola superior de la distribución es α /2 y de la inferior es α /2

9 Intervalo de confianza para la media conocida:

10 Estimación de la media para una longitud del papel con un 95% de confianza O Un fabricante de papel para computadora, con proceso de producción que opera continuamente a lo largo de un turno completo. Se espera que tenga el papel una media de longitud de 11 pulgadas. O μ = 11 O σ = 0.02 pulgadas

11

12 Estimación de la media de la longitud del papel con un 99% de confianza

13 Para tener un 100% de certeza se debe muestrear a la población completa

14 Práctica 1. Una tienda de pinturas, donde la media debe ser igual a 1 galón μ = 1 galón, σ = 0.02 de galón, X= por galón n = 50 latas Z =Estimación de confianza del 99% El gerente quiere reclamar al productor, ¿tiene derecho a quejarse? ¿Por qué? Justifica tu respuesta.

15 2. La división de pesos y medidas del Condado Lee, desea estimar la cantidad real de contenido en botellas de 2 litros de bebida refrescante en la planta embotelladora local de una empresa conocida a nivel nacional. La planta embotelladora ha informado a la división de inspección que la desviación estándar poblacional para las botellas de 2 litros es de 0.05 de litro. Una muestra aleatoria de 100 botellas de 2 litros en la planta embotelladora indica una media muestral de 1.99 litros. a. Construya una estimación de intervalo de confianza del 95% de la media poblacional cantidad de bebida refrescante en cada botella. b. Explique porqué el valor de 2.02 litros para una botella sola no es inusual, aún cuando esté fuera del intervalo de confianza calculado. c. Suponga que la media muestral hubiera sido de 1.97 litros, ¿cuál sería la respuesta al inciso a)?

16 Estimación del intervalo de confianza para una proporción

17

18 O Suponiendo que x como n – x son mayores que 5. O Se puede usar la estimación del intervalo de confianza de la proporción para estimar la proporción de facturas de ventas que contienen errores.

19 O Suponga que una muestra de 100 facturas de ventas, 10 contienen errores. Así entonces, para estos datos, p=x/n = 10/100= 0.10, para un 95% de confianza Z=1.96 O Sustituyendo: ± (1.96) * [Raíz de (0.10)(1-0.10)/100] (1.96)(0.03) π (1.96)(0.03) π Así usted tiene un nivel de confianza del 95% de que entre 4.12 y el 15.88% de todas las facturas de ventas contienen errores.

20 Ejercicio 1 O Estimación de la proporción de periódicos defectuosos impresos, tal como borraduras en exceso, disposición errónea de las hojas, páginas faltantes o duplicadas. O Selecciona una muestra de 200 periódicos, 35 de ellos contienen algún tipo de defecto. Realice e interprete un intervalo de confianza del 90% para la proporción de periódicos impresos durante el día que tienen defectos.

21 Ejercicio 2 O Si n = 200, X = 50, construya una estimación del intervalo de confianza del 95% para la proporción de la población

22 Ejercicio 3 O Si n=400, x =25, construya una estimación del intervalo de confianza del 99% para la proporción de la población

23 Ejercicio 4 O Una empresa telefónica desea estimar la proporción de hogares en los que se contrataría una línea telefónica adicional. Se seleccionó una muestra aleatoria de 500 hogares. Los resultados indican que a un costo reducido, 135 de los hogares contrataría una línea telefónica adicional. a. Construya una estimación de intervalo de confianza del 99% de la proporción poblacional de hogares que contratarían una línea telefónica adicional. b. ¿Cómo podría el gerente a cargo de los programas promocionales relacionados con los clientes residenciales, usar los resultados del inciso a).

24

25


Descargar ppt "Probabilidad y Estadística para CEA Mtra. Ma. Del Carmen López Munive Sesión 8 Estimación puntual y por intervalos."

Presentaciones similares


Anuncios Google